

Pebeo Glazing Resin Part B Jasco Pty Limited

Chemwatch: **5416-43**Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **08/31/2020**Print Date: **09/04/2020**L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Pebeo Glazing Resin Part B	
Synonyms	EN-FDS012 Glazing Resin Part B	
Proper shipping name	CORROSIVE LIQUID, N.O.S. (contains isophorone diamine)	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Glazing resin : part B hardener. Paints & Varnishes for artists
Nelevant identified uses	Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

Registered company name	Jasco Pty Limited	
Address	1-5 Commercial Road Kingsgrove NSW 2208 Australia	
Telephone	61 2 9807 1555	
Fax	Not Available	
Website	www.jasco.com.au	
Email	Email sales@jasco.com.au	

Emergency telephone number

Association / Organisation	Australian Poisons Centre	
Emergency telephone numbers	13 11 26 (24/7)	
Other emergency telephone numbers	Not Available	

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S5		
Classification ^[1]	Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Chronic Aquatic Hazard Category 2		
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI		

Label elements

Hazard pictogram(s)

Issue Date: **08/31/2020**Print Date: **09/04/2020**

Hazard statement(s)

H302 Harmful if swallowed.	
H312 Harmful in contact with skin.	
H314	Causes severe skin burns and eye damage.
H317	May cause an allergic skin reaction.
H335	May cause respiratory irritation.
H411	Toxic to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P260	Do not breathe mist/vapours/spray.
P271 Use in a well-ventilated area.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P330+P331 IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. P303+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.	
P303+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.	
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rins	
P310 Immediately call a POISON CENTER or doctor/physician.	
P321 Specific treatment (see advice on this label).	
P322 Specific measures (see advice on this label).	
P363 Wash contaminated clothing before reuse.	
P302+P352 IF ON SKIN: Wash with plenty of water and soap.	
P333+P313 If skin irritation or rash occurs: Get medical advice/attention.	
P391 Collect spillage.	
P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.	
P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233 Store in a well-ventilated place. Keep container tightly closed.		

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
2855-13-2	25-50	isophorone diamine
68609-08-5	10-25	bisphenol A diglycidyl ether isophorone diamine adduct

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	

If this product comes in contact with the eyes:

Immediately hold eyelids apart and flush the eye continuously with running water.

Chemwatch: 5416-43

Page 3 of 19

Issue Date: 08/31/2020

Version No: 2.1.1.1

Print Date: 09/04/2020

Pebeo Glazing Resin Part B

• Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Skin Contact Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. If fumes or combustion products are inhaled remove from contaminated area. Lav patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) ▶ For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and Ingestion prevent aspiration. Observe the patient carefully. ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. ► Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

For amines:

- Certain amines may cause injury to the respiratory tract and lungs if aspirated. Also, such products may cause tissue destruction leading to stricture. If lavage is performed, endotracheal and/or esophagoscopic control is suggested.
- No specific antidote is known.
- Care should be supportive and treatment based on the judgment of the physician in response to the reaction of the patient.

Laboratory animal studies have shown that a few amines are suspected of causing depletion of certain white blood cells and their precursors in lymphoid tissue. These effects may be due to an immunosuppressive mechanism.

Some persons with hyperreactive airways (e.g., asthmatic persons) may experience wheezing attacks (bronchospasm) when exposed to airway irritants. Lung injury may result following a single massive overexposure to high vapour concentrations or multiple exposures to lower concentrations of any pulmonary irritant material.

Health effects of amines, such as skin irritation and transient corneal edema ("blue haze," "halo effect," "glaucopsia"), are best prevented by means of formal worker education, industrial hygiene monitoring, and exposure control methods. Persons who are highly sensitive to the triggering effect of non-specific irritants should not be assigned to jobs in which such agents are used, handled, or manufactured.

Medical surveillance programs should consist of a pre-placement evaluation to determine if workers or applicants have any impairments (e.g., hyperreactive airways or bronchial asthma) that would limit their fitness for work in jobs with potential for exposure to amines. A clinical baseline can be established at the time of this evaluation.

Periodic medical evaluations can have significant value in the early detection of disease and in providing an opportunity for health counseling.

Medical personnel conducting medical surveillance of individuals potentially exposed to polyurethane amine catalysts should consider the following:

- ▶ Health history, with emphasis on the respiratory system and history of infections
- Physical examination, with emphasis on the respiratory system and the lymphoreticular organs (lymph nodes, spleen, etc.)
- Lung function tests, pre- and post-bronchodilator if indicated
- ► Total and differential white blood cell count
- ► Serum protein electrophoresis

Persons who are concurrently exposed to isocyanates also should be kept under medical surveillance.

Pre-existing medical conditions generally aggravated by exposure include skin disorders and allergies, chronic respiratory disease (e.g. bronchitis, asthma, emphysema), liver disorders, kidney disease, and eye disease.

Broadly speaking, exposure to amines, as characterised by amine catalysts, may cause effects similar to those caused by exposure to ammonia. As such, amines should be considered potentially injurious to any tissue that is directly contacted.

Inhalation of aerosol mists or vapors, especially of heated product, can result in chemical pneumonitis, pulmonary edema, laryngeal edema, and delayed scarring of the airway or other affected organs. There is no specific treatment.

Clinical management is based upon supportive treatment, similar to that for thermal burns.

Persons with major skin contact should be maintained under medical observation for at least 24 hours due to the possibility of delayed reactions.

Version No: 2.1.1.1

Pebeo Glazing Resin Part B

Issue Date: 08/31/2020 Print Date: 09/04/2020

Polyurethene Amine Catalysts: Guidelines for Safe Handling and Disposal Technical Bulletin June 2000 **Alliance for Polyurethanes Industry**

For acute or short-term repeated exposures to highly alkaline materials:

- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxvgen is given as indicated.
- ▶ The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue

Alkalis continue to cause damage after exposure.

INGESTION:

Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

Supportive care involves the following:

- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Larefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam
- ▶ Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Fire Fighting Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Combustible Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Fire/Explosion Hazard Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit corrosive fumes.

SECTION 6 Accidental release measures

HAZCHEM

2X

Personal precautions, protective equipment and emergency procedures

Issue Date: **08/31/2020**Print Date: **09/04/2020**

Environmental precautions

See section 12

Methods and material for containment and cleaning up

In the event of a spill of a reactive diluent, the focus is on containing the spill to prevent contamination of soil and surface or ground water. If irritating vapors are present, an approved air-purifying respirator with organic vapor canister is recommended for cleaning up spills and leaks. For small spills, reactive diluents should be absorbed with sand. Parins for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Minor Spills Check regularly for spills and leaks. ▶ Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. ▶ Control personal contact with the substance, by using protective equipment. ▶ Contain and absorb spill with sand, earth, inert material or vermiculite. ▶ Wipe up. ▶ Place in a suitable, labelled container for waste disposal. Industrial spills or releases of reactive diluents are infrequent and generally contained. If a large spill does occur, the material should be captured, collected, and reprocessed or disposed of according to applicable governmental requirements. An approved air-purifying respirator with organic-vapor canister is recommended for emergency work. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. ▶ Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). **Major Spills** Stop leak if safe to do so. ► Contain spill with sand, earth or vermiculite. ▶ Collect recoverable product into labelled containers for recycling. ▶ Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. · After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.

▶ If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Precautions for safe hand	dling	
Safe handling	 DO NOT USE brass or copper containers / stirrers DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. 	
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. DO NOT store near acids, or oxidising agents No smoking, naked lights, heat or ignition sources. 	

Issue Date: **08/31/2020**Print Date: **09/04/2020**

- · Liquid epoxy curing agents will corrode certain common structural metals.
- · If slight colouration of the curing agent is acceptable, storage tanks may be made of carbon steel or black iron, provided they are free of rust and mill scale. However, if the amine is stored in such tanks for three or four months or longer, colour may develop due to iron contamination. If iron contamination cannot be tolerated, tanks constructed of types 304 or 316 stainless steel should be used. (Note: Because they are quickly corroded by amines, do not use aluminum, copper, copper alloys, brass, or bronze in tanks or lines.)
- · Although horizontal tanks may be used, vertical tanks are suggested because they are usually more economical to install, occupy less space, and provide more accurate tank gauging.

(Note: In accordance with National Fire Protection Association Rule 30.17, item 2-1.31 (b), a vertical tank, designed to American Petroleum Institute (API) Standard 650, is suggested for curing agents. European equivalents include flat bottomed tank design DIN 4119, Parts 1 and 2, and horizontal, vertical DIN 6600-6625.)

To ensure safe and orderly delivery, the capacity of the storage tank should be large enough to hold the amount of epoxy curing agent normally shipped in a maximum capacity tank car or tank truck, plus additional working inventory. Also, consider oversizing the tank sufficiently to create a space to accommodate bubbles which may be created by the gas flow used to clear the piping. (Note: If a suction heater is used in the tank, additional capacity should be allowed for the heel.) Also, when calculating tank size, allow sufficient freeboard for liquid expansion while heating. A suitable foundation is required for all curing agent storage tanks. Temperatures, necessary for transfer and ease of handling of liquid epoxy amine hardeners, generally can be achieved with little or no heating, especially if the storage tank is located in a warm or temperate climate, is well insulated, or is stored indoors in a heated or insulated building. However, product stored outdoors in an uninsulated tank, especially in cold climates, may require some degree of heating. These temperatures can generally be achieved by using some combination of heat tracing and insulated jacketing or external low-pressure steam or hot water heaters, heating coils or a suction heater.

In the design of heaters for storage tanks, all factors pertinent to a particular application must be considered. These include: desired rate of tank warm-up; heat losses to the atmosphere; temperature and capacity of heat source available; amount of agitation available for tank contents; the geometry and space limitations of the proposed installation; etc. Internal pipe coil heaters may be appropriate where quick heat-up is not necessary and where heat losses are small or limited by tank insulation. The coils should be located near the bottom of the tank and should be sized to give sufficient heat transfer surface, both to provide the required heat-up rate and to take care of heat losses to the atmosphere. Uniform temperature of the tank contents can be achieved by using the tank pump to circulate the contents over the tank heating coil.

Finally, for quick tank heat-up and good mixing within the tank, consider the use of tank eductors, particularly for mixing when starting with cold material. Proper sizing of the pump and the eductors is necessary to ensure sufficient velocity through the eductors. The more economical eductor models are 1.5 inches (38 mm) in size. The recycle flow is usually varied to give sufficient volume to effectively mix the material in the tank. The vendor can usually supply curves of pressure drop and pumping capacity. If an agitator is required, a top-entering agitator should be used. In all heated tank systems, it is recommended that the design include provisions to keep pipe coils or suction heater coils submerged at all times. Heaters should be mounted as low in the tank as possible. Again, in areas where temperatures are not expected to drop below freezing for extended periods, one inch of dense glass-fiber insulation is generally sufficient; however, in colder climates, heat tracing of the lines and at least two inches of insulation should be used. Also, the insulation should be covered with an aluminum weather barrier.

► DO NOT use aluminium or galvanised containers

- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- ▶ Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging;
- ▶ Cans with friction closures and
- low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

In general, uncured epoxy resins have only poor mechanical, chemical and heat resistance properties. However, good properties are obtained by reacting the linear epoxy resin with suitable curatives to form three-dimensional cross-linked thermoset structures. This process is commonly referred to as curing or gelation process. Curing of epoxy resins is an exothermic reaction and in some cases produces sufficient heat to cause thermal degradation if not controlled.

Curing may be achieved by reacting an epoxy with itself (homopolymerisation) or by forming a copolymer with polyfunctional curatives or hardeners. In principle, any molecule containing a reactive hydrogen may react with the epoxide groups of the epoxy resin. Common classes of hardeners for epoxy resins include amines, acids, acid anhydrides, phenols, alcohols and thiols. Relative reactivity (lowest first) is approximately in the order: phenol < anhydride < aromatic amine < cycloaliphatic amine < alignments amine < thiol

The epoxy curing reaction may be accelerated by addition of small quantities of accelerators. Tertiary amines, carboxylic acids and alcohols (especially phenols) are effective accelerators. Bisphenol A is a highly effective and widely used accelerator, but is now increasingly replaced due to health concerns with this substance.

Epoxy resin may be reacted with itself in the presence of an anionic catalyst (a Lewis base such as tertiary amines or imidazoles) or a cationic catalyst (a Lewis acid such as a boron trifluoride complex) to form a cured network. This process is known as catalytic homopolymerisation. The resulting network contains only ether bridges, and exhibits high thermal and chemical resistance, but is brittle and often requires elevated temperature to effect curing, so finds only niche applications industrially. Epoxy homopolymerisation is often used when there is a requirement for UV curing, since cationic UV catalysts may be

Suitable container

Storage incompatibility

Continued...

Storago incompatibility

Chemwatch: 5416-43 Page 7 of 19 Issue Date: 08/31/2020 Version No: 2.1.1.1

Pebeo Glazing Resin Part B

Print Date: 09/04/2020

employed (e.g. for UV coatings).

- Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- Avoid contact with copper, aluminium and their alloys.

Reactive diluents are stable under recommended storage conditions, but can decompose at elevated temperatures.In some cases, decomposition can cause pressure build-up in closed systems. Glycidyl ethers:

- may form unstable peroxides on storage in air ,light, sunlight, UV light or other ionising radiation, trace metals inhibitor should be maintained at adequate levels
- ▶ may polymerise in contact with heat, organic and inorganic free radical producing initiators
- may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines
- react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine dioxide
- attack some forms of plastics, coatings, and rubber
- Avoid cross contamination between the two liquid parts of product (kit).
- If two part products are mixed or allowed to mix in proportions other than manufacturer's recommendation, polymerisation with gelation and evolution of heat (exotherm) may occur.

TEEL-2

Not Available

TEEL-3

- This excess heat may generate toxic vapour
- Avoid reaction with amines, mercaptans, strong acids and oxidising agents

TEEL-1

SECTION 8 Exposure controls / personal protection

Material name

Not Available

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Ingredient

Emergency Limits

Pebeo Glazing Resin Part B	Not Available	Not Available	Not Available	Not Available
Ingredient	Original IDLH		Revised IDLH	
isophorone diamine	Not Available		Not Available	
bisphenol A diglycidyl ether				

Occupational Exposure Banding

isophorone diamine adduct

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
isophorone diamine	D	> 0.1 to ≤ 1 ppm	
bisphenol A diglycidyl ether isophorone diamine adduct	E	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- b cause increased susceptibility to other irritants and infectious agents
- ▶ lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

For epichlorohydrin

Odour Threshold Value: 0.08 ppm

NOTE: Detector tubes for epichlorohydrin, measuring in excess of 5 ppm, are commercially available.

Exposure at or below the recommended TLV-TWA is thought to minimise the potential for adverse respiratory, liver, kidney effects. Epichlorohydrin has been

Chemwatch: **5416-43**Version No: **2.1.1.1**

Page 8 of 19

Pebeo Glazing Resin Part B

Issue Date: 08/31/2020 Print Date: 09/04/2020

implicated as a human skin sensitiser, hence individuals who are hypersusceptible or otherwise unusually responsive to certain chemicals may NOT be adequately protected from adverse health effects.

Odour Safety Factor (OSF)

OSF=0.54 (EPICHLOROHYDRIN)

Amine adducts have much reduced volatility and are less irritating to the skin and eyes than amine hardeners. However commercial amine adducts may contain a percentage of unreacted amine and all unnecessary contact should be avoided.

Amine adducts are prepared by reacting excess primary amines with epoxy resin.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Personal protection

Epoxy amine hardeners may produce eye discomfort, irritation, or even injury; thus, all eye contact with either the liquid or solid products (including vapours, mists, aerosols, or dusts) should be strictly avoided through the use of appropriate eye protection, including chemical workers goggles (or monogoggles), a face shield that allows the use of chemical workers goggles, or a full-face respirator, depending on the degree of potential exposure.

Eye and face protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.

Chemwatch: 5416-43 Page 9 of 19 Version No: 2.1.1.1

Pebeo Glazing Resin Part B

Issue Date: 08/31/2020 Print Date: 09/04/2020

- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- ▶ Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ► Elbow length PVC gloves
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact.
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons.

The performance, based on breakthrough times .of:

- Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent
- Butyl Rubber ranges from excellent to good
- Nitrile Butyl Rubber (NBR) from excellent to fair.
- Neoprene from excellent to fair
- Polyvinyl (PVC) from excellent to poor

As defined in ASTM F-739-96

- Excellent breakthrough time > 480 min
- Good breakthrough time > 20 min
- Fair breakthrough time < 20 min
- Poor glove material degradation

Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)

DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).

Continued...

Hands/feet protection

Version No: **2.1.1.1**

Pebeo Glazing Resin Part B

Issue Date: **08/31/2020**Print Date: **09/04/2020**

	 DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use. Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times
Body protection	See Other protection below
Other protection	 Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AK-AUS / Class1 P2	-
up to 50	1000	-	AK-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	AK-2 P2
up to 100	10000	-	AK-3 P2
100+			Airline**

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Viscous liquid; does not mix with water.			
Physical state	Liquid	Relative density (Water = 1)	1	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available	
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Available	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Available	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	Not Available	Gas group	Not Available	

Chemwatch: **5416-43**Version No: **2.1.1.1**

Page 11 of 19

Pebeo Glazing Resin Part B

Issue Date: **08/31/2020** Print Date: **09/04/2020**

Solubility in water	Immiscible	pH as a solution (1%)	11
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours. Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales.

Inhaled

Inhalation of amine vapours may cause irritation of the mucous membranes of the nose and throat and lung irritation with respiratory distress and cough. Single exposures to near lethal concentrations and repeated exposures to sublethal concentrations produces tracheitis, bronchitis, pneumonitis and pulmonary oedema. Aliphatic and alicyclic amines are generally well absorbed from the respiratory tract. Systemic effects include headache, nausea, faintness and anxiety. These effects are thought to be transient and are probably related to the pharmacodynamic action of the amines. Histamine release by aliphatic amines may produce bronchoconstriction and wheezing.

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems.

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

In animal testing, exposure to aerosols of some reactive diluents (notably o-cresol glycidyl ether, CAS RN: 2210-79-9) has been reported to affect the adrenal gland, central nervous system, kidney, liver, ovaries, spleen, testes, thymus, and respiratory tract.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Ingestion of alkaline corrosives may produce immediate pain, and circumoral burns. Mucous membrane corrosive damage is characterised by a white appearance and soapy feel; this may then become brown, oedematous and ulcerated. Profuse salivation with an inability to swallow or speak may also result. Even where there is limited or no evidence of chemical burns, both the oesophagus and stomach may experience a burning pain; vomiting and diarrhoea may follow. The vomitus may be thick and may be slimy (mucous) and may eventually contain blood and shreds of mucosa. Epiglottal oedema may result in respiratory distress and asphyxia. Marked hypotension is symptomatic of shock; a weak and rapid pulse, shallow respiration and clammy skin may also be evident. Circulatory collapse may occur and, if uncorrected, may produce renal failure. Severe exposures may result in oesophageal or gastric perforation accompanied by mediastinitis, substernal pain, peritonitis, abdominal rigidity and fever. Although oesophageal, gastric or pyloric stricture may be evident initially, these may occur after weeks or even months and years. Death may be quick and results from asphyxia, circulatory collapse or aspiration of even minute amounts. Death may also be delayed as a result of perforation, pneumonia or the effects of stricture formation.

Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients

Chemwatch: 5416-43 Page 12 of 19 Issue Date: 08/31/2020
Version No: 2.1.1.1 Print Date: 09/04/2020

Pebeo Glazing Resin Part B

condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred.

Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. However, swallowing larger amounts may cause injury.

Aliphatic and alicyclic amines are generally well absorbed from the gut. Corrosive action may cause tissue damage throughout the gastrointestinal tract. Detoxification is thought to occur in the liver, kidney and intestinal mucosa with the enzymes, monoamine oxidase and diamine oxidase (histaminase) having a significant role.

Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head count, sperm motility, and sperm abnormality in the BADGE treatment groups

Skin contact with the material may be harmful; systemic effects may result following absorption.

Volatile amine vapours produce primary skin irritation and dermatitis. Direct local contact, with the lower molecular weight liquids, may produce skin burns. Percutaneous absorption of simple aliphatic amines is known to produce lethal effects often the same as that for oral administration. Cutaneous sensitisation has been recorded chiefly due to ethyleneamines. Histamine release following exposure to many aliphatic amines may result in "triple response" (white vasoconstriction, red flare and wheal) in human skin.

Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterised by erythema and oedema, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation in rabbits when applied daily for 4 hours over 20 days.

Following the initial contact there may be a discrete erythematous lesion, confined to the point of contact, which may persist for 48 hours to 10 days; the erythema may give way to a papular, vesicular rash with scaling.

In animals uncured resin produces moderate ante-mortem depression, loss of body weight and diarrhoea. Local irritation, inflammation and death resulting from respiratory system depression are recorded. Higher molecular weight resins generally produce lower toxicity.

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur.

Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided

Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatinous and necrotic; tissue destruction may be deep.

Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause burns.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

Direct contact with alkaline corrosives may produce pain and burns. Oedema, destruction of the epithelium, corneal opacification and iritis may occur. In less severe cases these symptoms tend to resolve. In severe injuries the full extent of the damage may not be immediately apparent with late complications comprising a persistent oedema, vascularisation and corneal scarring, permanent opacity, staphyloma, cataract, symblepharon and loss of sight.

Vapours of volatile amines cause eye irritation with lachrymation, conjunctivitis and minor transient corneal oedema which results in "halos" around lights (glaucopsia, "blue haze", or "blue-grey haze"). Vision may become misty and halos may appear several hours after workers are exposed to the substance

This effect generally disappears spontaneously within a few hours of the end of exposure, and does not produce physiological after-effects. However oedema of the corneal epithelium, which is primarily responsible for vision disturbances, may take more than one or more days to clear, depending on the severity of exposure. Photophobia and discomfort from the roughness of the corneal surface also may occur after greater exposures.

Although no detriment to the eye occurs as such, glaucopsia predisposes an affected individual to physical accidents and reduces the ability to undertake skilled tasks such as driving a vehicle.

Direct local contact with the liquid may produce eye damage which may be permanent in the case of the lower molecular weight species.

Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe corneal injury.

The vapour when concentrated has pronounced eye irritation effects and this gives some warning of high vapour concentrations. If eye irritation occurs seek to reduce exposure with available control measures, or evacuate area.

mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the

Skin Contact

-...

Eye

Chronic

Chemwatch: **5416-43**Page **13** of **19**Version No: **2.1.1.1**

Pebeo Glazing Resin Part B

Issue Date: **08/31/2020**Print Date: **09/04/2020**

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review.

A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.

Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that "it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades."

One review has concluded that obesity may be increased as a function of bisphenol A exposure, which "...merits concern among scientists and public health officials"

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood. A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, "these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls". Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells.[whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes.

Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called "cytostatic hormones". Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children

Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.

Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).

All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells.

Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity.

Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of

Chemwatch: **5416-43** Page **14** of **19**

Version No: 2.1.1.1

Pebeo Glazing Resin Part B

Issue Date: **08/31/2020**Print Date: **09/04/2020**

displayed effects is reason for concern

Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether.

A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria.

Bisphenol A diglycidyl ethers (BADGEs) produce sensitisation dermatitis characterised by a papular, vesicular eczema with considerable itching of the back of the hand, the forearm and face and neck. This lesion may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. This dermatitis may persist for longer periods following each exposure but is unlikely to become more intense. Lesions may develop a brownish colour and scaling occurs frequently. Lower molecular weight species produce sensitisation more readily.

In mice technical grades of bisphenol A diglycidyl ether produced epidermal tumours and a small increase in the incidence kidney tumours in males and of lymphoreticular/ haematopoietic tumours in females. Subcutaneous injection produced a small number of fibrosarcomas in rats.

BADGE is listed as an IARC Group 3 carcinogen, meaning it is "not classifiable as to its carcinogenicity to humans". Concern has been raised over this possible carcinogenicity because BADGE is used in epoxy resins in the lining of some tin cans for foodstuffs, and unreacted BADGE may end up in the contents of those cans.

For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions

Exposure to some reactive diluents (notably neopentylglycol diglycidyl ether, CAS RN:17557-23-2) has caused cancer in some animal testing.

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems.

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

Pebeo Glazing Resin Part	TOXICITY	IRRITATION	
В	Not Available	Not Available	
	TOXICITY	IRRITATION	
isophorone diamine	Oral (rat) LD50: 1030 mg/kg ^[2]	Not Available	
	TOXICITY	IRRITATION	
bisphenol A diglycidyl	Not Available	Eye: no adverse effect observed (not irritating) ^[1]	
ether isophorone diamine adduct		Skin: adverse effect observed (corrosive) ^[1]	
	Skin: no adverse effect observed (not irritating) ^[1]		
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

For isophorone diamine

Based on a limited skin irritation study with rabbits and rats, isophorone diamine is deemed to be a strong irritant (duration of the exposure not reported) and corrosive after repeated application. Isophorone diamine is corrosive to the eyes of rabbits when tested according to OECD TG 405. Isophorone diamine was found to induce dermal sensitisation when tested according to OECD TG 406 in guinea pigs. From a number of publications there is evidence that frequent occupational exposure to isophorone diamine may lead to the development of allergic contact dermatitis in humans. No definite conclusion can be currently drawn on respiratory sensitisation.

ISOPHORONE DIAMINE

From two 14-day inhalative exposure studies with rats no NOAEL could be determined. At the first study's LOAEL of 18 mg/m3, degeneration/necrosis in the olfactory epithelium of the nose were observed. Trachea, larynx and lungs were affected at 200 mg/m3 and above (degeneration/necrosis, hyperplasia, squamous metaplasia). At the LOAEL of the follow-up study, i.e. at 2.2 mg/m3, reversible minimal to mild degeneration of respiratory nasal mucosa in the anterior dorsal nose was observed. In a subchronic drinking water study according to OECD TG 408, the administration of 150 mg/kg bw/day led to reduced absolute and relative kidney weights in male and female rats (histopathology being indicative for tubular nephrosis), while 59 mg/kg bw/day (males) and 62 mg/kg bw/day (females) were determined as a NOAEL.

Isophorone diamine was not mutagenic in bacteria and mammalian cell systems *in vitro* (Ames test according to Directive 84/449/EEC B.14 (1984) and HPRT test according to OECD TG 476 (1984)). It did not induce chromosomal aberrations in CHO cells *in vitro* in a test performed in accordance with OECD TG 473. *In vivo* mouse micronucleus tests (one performed according to OECD TG 474 (1983) for the induction of micronucleated polychromatic erythrocytes were clearly negative. From all *in*

Chemwatch: **5416-43**Version No: **2.1.1.1**

Page 15 of 19 Pebeo Glazing Resin Part B

Issue Date: **08/31/2020**Print Date: **09/04/2020**

vitro and *in vivo* tests performed there is no evidence that isophorone diamine has a mutagenic or clastogenic potential. No studies have been performed on the toxicity of isophorone diamine to reproduction.

Data from an oral 90-day study in rats according to OECD TG 408 did not reveal any adverse effects on the male and female reproductive organs.

Isophorone diamine did not show any teratogenic or embryofoetotoxic effects in a gavage study with rats performed in accordance with OECD TG 414 (2001) up to and including the highest tested dose level of 250 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day, effects at 250 mg/kg bw/day were reduced food consumption and reduced body weight gain. The NOAEL for developmental toxicity is 250 mg/kg bw/day.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

BISPHENOL A DIGLYCIDYL ETHER ISOPHORONE DIAMINE ADDUCT

No significant acute toxicological data identified in literature search.

ISOPHORONE DIAMINE & BISPHENOL A DIGLYCIDYL ETHER ISOPHORONE DIAMINE

ADDUCT

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Acute Toxicity	~	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend: X − Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

Pebeo Glazing Resin Part B	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available

Version No: 2.1.1.1

Pebeo Glazing Resin Part B

Issue Date: 08/31/2020 Print Date: 09/04/2020

	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96	Fish	=70mg/L	1
isophorone diamine	EC50	48	Crustacea	17.4mg/L	2
	EC50	72	Algae or other aquatic plants	37mg/L	2
	NOEC	72	Algae or other aquatic plants	=1.5mg/L	1
bisphenol A diglycidyl ether isophorone diamine	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96	Fish	1.62mg/L	2
	EC50	48	Crustacea	1.59mg/L	2
adduct	EC50	72	Algae or other aquatic plants	2.5mg/L	2
	NOEC	48	Crustacea	0.705mg/L	2
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicit 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data Vendor Data				

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
isophorone diamine	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation	
isophorone diamine	LOW (BCF = 3.4)	

Mobility in soil

Ingredient	Mobility
isophorone diamine	LOW (KOC = 340.4)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging

disposal

- Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Waste Management

Production waste from epoxy resins and resin systems should be treated as hazardous waste in accordance with National regulations. Fire retarded resins containing halogenated compounds should also be treated as special waste. Accidental spillage of resins, curing agents and their formulations should be contained and absorbed by special mineral absorbents to prevent them from entering the environment.

Contaminated or surplus product should not be washed down the sink, but preferably be fully reacted to form cross-linked solids which is non-hazardous and can be more easily disposed.

Finished articles made from fully cured epoxy resins are hard, infusible solids presenting no hazard to the environment. However, finished articles from flame-retarded material containing halogenated resins should be considered hazardous waste, and disposed as required by National laws. Articles made from epoxy resins, like other thermosets, can be recycled by grinding and used as fillers in other products. Another way of disposal and recovery is combustion with energy recovery.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Reduction

Page 17 of 19 Pebeo Glazing Resin Part B

Issue Date: 08/31/2020 Print Date: 09/04/2020

- ▶ Reuse
- Recycling
- ► Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.

Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used. M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010

- ► Recycle wherever possible.
- ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant.
- Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM

2X

Land transport (ADG)

UN number	1760			
UN proper shipping name	CORROSIVE LIQ	CORROSIVE LIQUID, N.O.S. (contains isophorone diamine)		
Transport hazard class(es)	Class 8 Subrisk Not A	Applicable		
Packing group				
Environmental hazard	Environmentally hazardous			
Special precautions for user	Special provisions 274 Limited quantity 1 L			

Air transport (ICAO-IATA / DGR)

UN number	1760			
UN proper shipping name	Corrosive liquid, n.o.s. * (contains isophorone diamine)			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	8 Not Applicable 8L		
Packing group	II			

Issue Date: **08/31/2020**Print Date: **09/04/2020**

Environmental hazard	Environmentally hazardous		
	Special provisions	A3 A803	
	Cargo Only Packing Instructions	855	
	Cargo Only Maximum Qty / Pack	30 L	
Special precautions for user	Passenger and Cargo Packing Instructions	851	
usei	Passenger and Cargo Maximum Qty / Pack	1 L	
	Passenger and Cargo Limited Quantity Packing Instructions	Y840	
	Passenger and Cargo Limited Maximum Qty / Pack	0.5 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1760				
UN proper shipping name	CORROSIVE LIQUII	CORROSIVE LIQUID, N.O.S. (contains isophorone diamine)			
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable				
Packing group	II				
Environmental hazard	Marine Pollutant				
Special precautions for user	EMS Number F-A , S-B Special provisions 274 Limited Quantities 1 L				

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

isophorone diamine is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

bisphenol A diglycidyl ether isophorone diamine adduct is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status	
Australia - AIIC	Yes	
Australia Non-Industrial Use	No (isophorone diamine; bisphenol A diglycidyl ether isophorone diamine adduct)	
Canada - DSL	Yes	
Canada - NDSL	No (bisphenol A diglycidyl ether isophorone diamine adduct)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	No (bisphenol A diglycidyl ether isophorone diamine adduct)	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	No (bisphenol A diglycidyl ether isophorone diamine adduct)	
Vietnam - NCI	Yes	

Chemwatch: 5416-43 Page 19 of 19 Issue Date: 08/31/2020 Version No: 2.1.1.1 Print Date: 09/04/2020

Pebeo Glazing Resin Part B

National Inventory	Status	
Russia - ARIPS	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 Other information

Revision Date	08/31/2020
Initial Date	08/31/2020

SDS Version Summary

Version	Issue Date	Sections Updated
2.1.1.1	08/31/2020	Synonyms

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value **BCF**: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

ORDER CODE	PART#	DESCRIPTION	RETAIL BARCODE
PEBEO			
Gedeo			
Resin			
Glazing Resin			
8627355	766170	PEBEO GEDEO GLAZING RESIN KIT 150ML	3597587661702