

Kent Graphic Fineliner & Brush Pen Set 7pc Jasco Pty Limited

Chemwatch: 5531-23

Version No: 2.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **01/03/2022**Print Date: **03/03/2022**L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Kent Graphic Fineliner & Brush Pen Set 7pc
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Details of the supplier of the safety data sheet

Registered company name	Jasco Pty Limited
Address	1-5 Commercial Road Kingsgrove NSW 2208 Australia
Telephone	+61 2 9807 1555
Fax	Not Available
Website	www.jasco.com.au
Email	sales@jasco.com.au

Emergency telephone number

Association / Organisation	Australian Poisons Centre	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	13 11 26 (24/7)	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 2 9186 1132

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable
Classification [1]	Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Repeated Exposure Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Issue Date: 01/03/2022 Print Date: 03/03/2022

Signal word	Dange	١

Hazard statement(s)

H302	Harmful if swallowed.
H315	Causes skin irritation.
H318	Causes serious eye damage.
H373	May cause damage to organs through prolonged or repeated exposure.

Precautionary statement(s) Prevention

P260	Do not breathe mist/vapours/spray.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264	Wash all exposed external body areas thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a POISON CENTER/doctor/physician/first aider.
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.
P302+P352	IF ON SKIN: Wash with plenty of water.
P330	Rinse mouth.
P332+P313	If skin irritation occurs: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
107-21-1	10-25	ethylene glycol
9043-30-5	2.5-10	isotridecyl alcohol, ethoxylated
Not Available	balance	Ingredients determined not to be hazardous
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

D

Description of first aid measures		
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	 If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. 	

Chemwatch: 5531-23 Issue Date: 01/03/2022 Page 3 of 19 Version No: 2.1 Print Date: 03/03/2022

Kent Graphic Fineliner & Brush Pen Set 7pc

	► Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

- ▶ Polyethylene glycols are generally poorly absorbed orally and are mostly unchanged by the kidney.
- P Dermal absorption can occur across damaged skin (e.g. through burns) leading to increased osmolality, anion gap metabolic acidosis, elevated calcium, low ionised calcium, CNS depression and renal failure.
- Treatment consists of supportive care.

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility	 Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. ▶ Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Fire Fighting Avoid spraying water onto liquid pools. ▶ DO NOT approach containers suspected to be hot. ▶ Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. • On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. ▶ Mists containing combustible materials may be explosive. Fire/Explosion Hazard Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. **HAZCHEM** Not Applicable

Chemwatch: 5531-23 Page 4 of 19 Issue Date: 01/03/2022

Version No: 2.1 Print Date: 03/03/2022 Kent Graphic Fineliner & Brush Pen Set 7pc

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

	Slippery when	spilt.					
	► Remove all	ignition se	ources.				
	Clean up a	•	•				
Minor Spills	Avoid breat	• .				•	
	 Control personal contact with the substance, by using protective e Contain and absorb spill with sand, earth, inert material or vermice 						
	Contain andWipe up.	d absorb s	spili with san	a, eai	tn, inert m	aterial or v	/ermiculite.
	► Place in a s	suitable, la	belled conta	ainer f	or waste d	isposal.	
	Chemical Class	s: alcohols	and glycols	3			
	For release ont	to land: re	commended	sorb	ents listed	in order of	priority.
	SORBENT TYPE	RANK	APPLICA [*]	TION	COLLE	ECTION	LIMITATIONS
	LAND SPILL - SMALL						
	cross-linked	oolymer - ¡	particulate	1	shovel	shovel	R, W, SS
	cross-linked	polymer - p	oillow	1	throw	pitchfork	R, DGC, RT
	sorbent clay	- particulat	te	2	shovel	shovel	R,I, P
	wood fiber - p	oillow		3	throw	pitchfork	R, P, DGC, RT
	treated wood fiber - pillow		3	throw	pitchfork	DGC, RT	
	foamed glass - pillow			4	throw	pichfork	R, P, DGC, RT
	LAND SPILL -	MEDIUM					
	cross-linked	oolymer - ¡	particulate	1	blower	skipload	ler R,W, SS
	polypropylen	e - particu	late	2	blower	skipload	ler W, SS, DGC
	sorbent clay - particulate		2	blower	skipload	ler R, I, W, P, DGC	
	polypropylen	e - mat		3	throw	skipload	ler DGC, RT
	expanded mineral - particulate		3	blower	skipload	ler R, I, W, P, DGC	
	polyurethane	- mat		4	throw	skipload	ler DGC, RT
Major Spills	Legend						
	DGC: Not effec	tive where	e ground cov	er is	dense		
	R; Not reusable						
	I: Not incinerable						

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Slippery when spilt.

Moderate hazard.

- Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- ▶ No smoking, naked lights or ignition sources.
- Increase ventilation.
- ▶ Stop leak if safe to do so.
- ► Contain spill with sand, earth or vermiculite.
- ▶ Collect recoverable product into labelled containers for recycling.
- ▶ Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Chemwatch: **5531-23** Page **5** of **19**

Kent Graphic Fineliner & Brush Pen Set 7pc

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

Version No: 2.1

- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Consider storage under inert gas.

- ▶ Store in original containers.
- ► Keep containers securely sealed.
- ▶ No smoking, naked lights or ignition sources.
- ▶ Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Storage incompatibility

Other information

- Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water. Alcohols

- are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen
- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium. triisobutylaluminium

• Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-

▶ should not be heated above 49 deg. C. when in contact with aluminium equipment

Ethylene glycol:

- reacts violently with oxidisers and oxidising acids, sulfuric acid, chlorosulfonic acid, chromyl chloride, perchloric acid
- ▶ forms explosive mixtures with sodium perchlorate
- is incompatible with strong acids, caustics, aliphatic amines, isocyanates, chlorosulfonic acid, oleum, potassium bichromate, phosphorus pentasulfide, sodium chlorite
- Avoid strong acids, bases.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	ethylene glycol	Ethylene glycol (vapour)	20 ppm / 52 mg/m3	104 mg/m3 / 40 ppm	Not Available	Not Available
Australia Exposure Standards	ethylene glycol	Ethylene glycol (particulate)	10 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
ethylene glycol	30 ppm	150 ppm	900 ppm

Issue Date: 01/03/2022

Print Date: 03/03/2022

Version No: 2.1

Kent Graphic Fineliner & Brush Pen Set 7pc

Issue Date: **01/03/2022**Print Date: **03/03/2022**

Ingredient	Original IDLH	Revised IDLH
ethylene glycol	Not Available	Not Available
isotridecyl alcohol, ethoxylated	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
isotridecyl alcohol, ethoxylated	E	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise.

CR = Cancer Risk/10000; UF = Uncertainty factor:

TLV believed to be adequate to protect reproductive health:

LOD: Limit of detection

Toxic endpoints have also been identified as:

D = Developmental; R = Reproductive; TC = Transplacental carcinogen Jankovic J., Drake F.: A Screening Method for Occupational Reproductive American Industrial Hygiene Association Journal 57: 641-649 (1996)

for ethylene glycol:

Odour Threshold: 25 ppm

NOTE: Detector tubes for ethylene glycol, measuring in excess of 10 mg/m3, are commercially available.

It appears impractical to establish separate TLVs for ethylene glycol vapour and mists. Atmospheric concentration that do not cause discomfort are unlikely to cause adverse effects. The TLV-C is thought to be protective against throat and respiratory irritation and headache reported in exposed humans. NIOSH has not established a limit for this substance due to the potential teratogenicity associated with exposure and because respiratory irritation reported at the TLV justified a lower value

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity

Chemwatch: 5531-23 Page 7 of 19 Issue Date: 01/03/2022 Version No: 2.1 Print Date: 03/03/2022

Kent Graphic Fineliner & Brush Pen Set 7pc

3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Hands/feet protection

See Hand protection below

► Elbow length PVC gloves

NOTE:

- Fig. The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- $\boldsymbol{\cdot}$ chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there

Chemwatch: 5531-23 Version No: 2.1

Kent Graphic Fineliner & Brush Pen Set 7pc

Issue Date: **01/03/2022**Print Date: **03/03/2022**

	is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Kent Graphic Fineliner & Brush Pen Set 7pc

Material	СРІ
NATURAL RUBBER	A
NATURAL+NEOPRENE	A
NEOPRENE	A
NEOPRENE/NATURAL	A
NITRILE	A
NITRILE+PVC	A
PE/EVAL/PE	A
PVC	A
TEFLON	A
PVA	В

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Black liquid with light odour, mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	8	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	5.2 @ 20 C
Initial boiling point and boiling range (°C)	100	Molecular weight (g/mol)	Not Applicable

Chemwatch: **5531-23**Page **9** of **19**Issue Date: **01/03/2022**Version No: **2.1**Version No: **2.1**Print Date: **03/03/2022**

Kent Graphic Fineliner & Brush Pen Set 7pc

Flash point (°C)	111	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	53	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	3.2	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	2	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by inhalation.

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhaled

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may produce severe damage to the health of the individual. Relatively small amounts absorbed through the lungs may prove fatal. Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well.

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by swallowing.

The toxic effects of glycols (dihydric alcohols), following ingestion are similar to those of alcohol, with depression of the central nervous system (CNS), nausea, vomiting and degenerative changes in liver and kidney.

Ingestion

Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of

Continued...

Chemwatch: 5531-23 Page 10 of 19 Issue Date: 01/03/2022 Version No: 2.1

Kent Graphic Fineliner & Brush Pen Set 7pc

Print Date: 03/03/2022

decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased.

Within the homologous series of aliphatic alcohols, narcotic potency may increase even faster than lethality

Only scanty toxicity information is available about higher homologues of the aliohatic alcohol series (greater than C7) but animal data establish that lethality does not continue to increase with increasing chain length. Aliphatic alcohols with 8 carbons are less toxic than those immediately preceding them in the series. 10 -Carbon n-decyl alcohol has low toxicity as do the solid fatty alcohols (e.g. lauryl, myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (lauryl) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 ml) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema.

Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols are metabolised slowly and incompletely so their toxic effects are generally persistent.

for ethylene glycol:

Ingestion symptoms include respiratory failure, central nervous depression, cardiovascular collapse, pulmonary oedema, acute kidney failure, and even brain damage. Ingestion of 100 ml has caused death. (ChemInfo)

Toxicity of ethylene glycol to human (KB) cell cultures has been reported as less than that of ethanol. (NIOSHTIC)

Ethylene glycol produces a three-stage response with the severity of each stage dependent on the amount of ingestion. Hepatic damage is usually minimal. Central nervous system depression characterise the first 12 hours post ingestion.

Transient exhilaration occurs without the odour of ethanol.

Gastrointestinal complaints include nausea and vomiting. Acidosis, coma, convulsions and myoclonic jerks may also be evident. The optic fundus is usually normal although the presence of papilloedema may confuse the presentation with that produced by methanol. Nystagmus and opthalmoplegias may appear.

Cardiopulmonary effects are seen 12-24 hours post-ingestion and are characterised by tachycardia, tachypnea, and mild hypertension. Congestive heart failure and circulatory collapse may occur in severe intoxications.

Renal effects are seen 24-72 hours post-ingestion and are characterised by oliguria, flank pain, acute tubular necrosis, renal failure, and rarely, bone marrow arrest. Renal damage may be permanent.

Toxic effects of ethylene glycol are similar to those produced by ethanol but ethylene glycol produces toxic metabolites. Metabolic acidosis and anion gap result primarily from glycolic acid formation and some lactic

acid formation. The citric acid cycle is inhibited as a result of reduced NAD/NADH ratios and to a limited extent, the formation of oxalic acid, and to metabolic acidosis. Oxalate formation produces myocardial depression and acute tubular necrosis. Glycoaldehyde, glycolic acid and glyoxylic acid may contribute to CNS depression and may also produce renal toxicity by producing renal oedema. Hypocalcaemia may result from chelation by oxalate. Oxalic acid, glycoxalic acid, gl formic acid appear to form to only a limited degree during intoxication.

Oral administration to pregnant mice and rats produced birth defects amongst the off-spring.

Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by skin contact.

The material may accentuate any pre-existing dermatitis condition

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants

Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man.

Skin Contact

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either:

- produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Eye

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

Some nonionic surfactants may produce a localised anaesthetic effect on the cornea; this may effectively eliminate the warning discomfort produced by other substances and lead to corneal injury. Irritant effects range from minimal to severe dependent on the nature of the surfactant, its concentration and the duration of contact. Pain and corneal damage represent the most severe manifestation of irritation.

Chronic

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

Chemwatch: **5531-23**Page **11** of **19**Issue Date: **01/03/2022**Version No: **2.1**Print Date: **03/03/2022**Print Date: **03/03/2022**

sub-acute (28 day) or chronic (two-year) toxicity tests.

Kent Graphic Fineliner & Brush Pen Set 7pc

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals.

There is some evidence to provide a presumption that human exposure to the material may result in impaired fertility on the basis of: some evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Human volunteers exposed to ethylene glycol, 20 to 22 hours/day at mean daily concentrations ranging form 1.4 to 27 ppm for about 4 weeks complained of throat irritation, mild headache and low backache. Complaints became marked when the concentration in the exposure chamber was raised above 56 mg/m3 for part of the day. The most common complaint was irritation of the upper respiratory tract. Concentrations above 80 ppm were intolerable with a burning sensation along the trachea and a burning cough. Excessively exposed workers have reported drowsiness.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Kent Graphic Fineliner &	TOXICITY	IRRITATION
Brush Pen Set 7pc	Not Available	Not Available
	TOXICITY	IRRITATION
	dermal (mouse) LD50: >3500 mg/kg ^[1]	Eye (rabbit): 100 mg/1h - mild
	Oral (Rat) LD50; >2000 mg/kg ^[2]	Eye (rabbit): 12 mg/m3/3D
-di-da-a-da-a-d		Eye (rabbit): 1440mg/6h-moderate
ethylene glycol		Eye (rabbit): 500 mg/24h - mild
		Eye: no adverse effect observed (not irritating) ^[1]
		Skin (rabbit): 555 mg(open)-mild
		Skin: no adverse effect observed (not irritating) ^[1]
isotridecyl alcohol,	TOXICITY	IRRITATION
ethoxylated	Not Available	Not Available
Legend:	Value obtained from Europe ECHA Registered Substance Unless otherwise specified data extracted from RTECS - F	ces - Acute toxicity 2.* Value obtained from manufacturer's SDS. Register of Toxic Effect of chemical Substances

Kent Graphic Fineliner & Brush Pen Set 7pc

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

ETHYLENE GLYCOL

[Estimated Lethal Dose (human) 100 ml; RTECS quoted by Orica] Substance is reproductive effector in rats (birth defects). Mutagenic to rat cells.

ISOTRIDECYL ALCOHOL,

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However,

Chemwatch: 5531-23 Page 12 of 19 Issue Date: 01/03/2022 Version No: 2.1

Kent Graphic Fineliner & Brush Pen Set 7pc

Print Date: 03/03/2022

their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers.

Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69

Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners.

PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations.

Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10.000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular masss. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology

http://doi.org/10.5487/TR.2015.31.2.105

Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products . Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity.

Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates.

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture .

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing.

Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units:

EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes)

EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

EO > 15-20 gives Harmful (Xn) with R22-41

>20 EO is not classified (CESIO 2000)

Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) .

AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of

Chemwatch: **5531-23**Page **13** of **19**Issue Date: **01/03/2022**Version No: **2.1**Version No: **2.1**Print Date: **03/03/2022**

Kent Graphic Fineliner & Brush Pen Set 7pc

100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations.

AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use.

For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers):

Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr. Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that

of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight.

Metabolism: The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected *in vivo*. The principal metabolite of TGME is believed to be 2-[2-(2-methoxyethoxy)ethoxy] acetic acid. Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers.

The metabolites of category members are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur

Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death.

Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation.

Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity

In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation. Due to a high incidence of similar spontaneous changes

in normal New Zealand White rabbits , the testicular effects were considered not to be related to treatment . Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered unremarkable.

A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day. In this study, significantly-increased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats

In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically-significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic toxicity

Mutagenicity: Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity.

Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed,

 Chemwatch: 5531-23
 Page 14 of 19
 Issue Date: 01/03/2022

 Version No: 2.1
 Frint Date: 03/03/2022

Kent Graphic Fineliner & Brush Pen Set 7pc

several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day)

Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1,000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain.

Kent Graphic Fineliner & Brush Pen Set 7pc & ISOTRIDECYL ALCOHOL, ETHOXYLATED

No significant acute toxicological data identified in literature search.

For ethylene glycol:

Ethylene glycol is quickly and extensively absorbed through the gastrointestinal tract. Limited information suggests that it is also absorbed through the respiratory tract; dermal absorption is apparently slow. Following absorption, ethylene glycol is distributed throughout the body according to total body water. In most mammalian species, including humans, ethylene glycol is initially metabolised by alcohol.

dehydrogenase to form glycolaldehyde, which is rapidly converted to glycolic acid and glycoxal by aldehyde oxidase and aldehyde dehydrogenase. These metabolites are oxidised to glycoxylate; glycoxylate may be further metabolised to formic acid, oxalic acid, and glycine. Breakdown of both glycine and formic acid can generate CO2, which is one of the major elimination products of ethylene glycol. In addition to exhaled CO2, ethylene glycol is eliminated in the urine as both the parent compound and glycolic acid. Elimination of ethylene glycol from the plasma in both humans and laboratory animals is rapid after oral exposure; elimination half-lives are in the range of 1-4 hours in most species tested.

Respiratory Effects. Respiratory system involvement occurs 12-24 hours after ingestion of sufficient amounts of ethylene glycol and is considered to be part of a second stage in ethylene glycol poisoning The symptoms include hyperventilation, shallow rapid breathing, and generalized pulmonary edema with calcium oxalate crystals occasionally present in the lung parenchyma. Respiratory system involvement appears to be dose-dependent and occurs concomitantly with cardiovascular changes. Pulmonary infiltrates and other changes compatible with adult respiratory distress syndrome (ARDS) may characterise the second stage of ethylene glycol poisoning Pulmonary oedema can be secondary to cardiac failure, ARDS, or aspiration of gastric contents. Symptoms related to acidosis such as hyperpnea and tachypnea are frequently observed; however, major respiratory morbidities such as pulmonary edema and bronchopneumonia are relatively rare and usually only observed with extreme poisoning (e.g., in only 5 of 36 severely poisoned cases).

Cardiovascular Effects. Cardiovascular system involvement in humans occurs at the same time as respiratory system involvement, during the second phase of oral ethylene glycol poisoning, which is 12- 24 hours after acute exposure. The symptoms of cardiac involvement include tachycardia, ventricular gallop and cardiac enlargement. Ingestion of ethylene glycol may also cause hypertension or hypotension, which may progress to cardiogenic shock. Myocarditis has been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol. As in the case of respiratory effects, cardiovascular involvement occurs with ingestion of relatively high doses of ethylene glycol.

Nevertheless, circulatory disturbances are a rare occurrence, having been reported in only 8 of 36 severely poisoned cases. Therefore, it appears that acute exposure to high levels of ethylene glycol can cause serious cardiovascular effects in humans. The effects of a long-term, low-dose exposure are unknown.

Gastrointestinal Effects. Nausea, vomiting with or without blood, pyrosis, and abdominal cramping and pain are common early effects of acute ethylene glycol ingestion. Acute effects of ethylene glycol ingestion in one patient included intermittent diarrhea and abdominal pain, which were attributed to mild colonic ischaemia; severe abdominal pain secondary to colonic stricture and perforation developed 3 months after ingestion, and histology of the resected colon showed birefringent crystals highly suggestive of oxalate deposition.

Musculoskeletal Effects. Reported musculoskeletal effects in cases of acute ethylene glycol poisoning have included diffuse muscle tenderness and myalgias associated with elevated serum creatinine phosphokinase levels, and myoclonic jerks and tetanic contractions associated with hypocalcaemia.

Hepatic Effects. Central hydropic or fatty degeneration, parenchymal necrosis, and calcium oxalate crystals in the liver have been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol.

Renal Effects. Adverse renal effects after ethylene glycol ingestion in humans can be observed during the third stage of ethylene glycol toxicity 24-72 hours after acute exposure. The hallmark of renal toxicity is the presence of birefringent calcium oxalate monohydrate crystals deposited in renal tubules and their presence in urine after ingestion of relatively high amounts of ethylene glycol. Other signs of nephrotoxicity can include tubular cell degeneration and necrosis and tubular interstitial inflammation. If untreated, the degree of renal damage caused by high doses of ethylene glycol progresses and leads to haematuria, proteinuria, decreased renal function, oliguria, anuria, and ultimately renal failure. These changes in the kidney are linked to acute tubular necrosis but normal or near normal renal function can return with adequate supportive therapy.

Metabolic Effects. One of the major adverse effects following acute oral exposure of humans to ethylene glycol involves metabolic changes. These changes occur as early as 12 hours after ethylene glycol exposure. Ethylene glycol intoxication is accompanied by metabolic acidosis which is manifested by decreased pH and bicarbonate content of serum and other bodily fluids caused by accumulation of excess glycolic acid. Other characteristic metabolic effects of ethylene glycol poisoning are increased serum anion gap, increased osmolal gap, and hypocalcaemia. Serum anion gap is calculated from concentrations of sodium, chloride, and bicarbonate, is normally 12-16 mM, and is typically elevated after ethylene glycol ingestion due to increases in unmeasured metabolite anions (mainly glycolate).

Neurological Effects: Adverse neurological reactions are among the first symptoms to appear in humans after ethylene glycol ingestion. These early neurotoxic effects are also the only symptoms attributed to unmetabolised ethylene glycol. Together with metabolic changes, they occur during the period of 30 minutes to 12 hours after exposure and are considered to be part of the first stage in ethylene glycol intoxication. In cases of acute intoxication, in which a large amount of ethylene glycol is ingested

Kent Graphic Fineliner & Brush Pen Set 7pc & ETHYLENE GLYCOL Chemwatch: **5531-23**Page **15** of **19**Issue Date: **01/03/2022**Version No: **2.1**Version No: **2.1**Print Date: **03/03/2022**

Kent Graphic Fineliner & Brush Pen Set 7pc

over a very short time period, there is a progression of neurological manifestations which, if not treated, may lead to generalized seizures and coma. Ataxia, slurred speech, confusion, and somnolence are common during the initial phase of ethylene glycol intoxication as are irritation, restlessness, and disorientation. Cerebral edema and crystalline deposits of calcium oxalate in the walls of small blood vessels in the brain were found at autopsy in people who died after acute ethylene glycol ingestion. Effects on cranial nerves appear late (generally 5-20 days post-ingestion), are relatively rare, and according to some investigators constitute a fourth, late cerebral phase in ethylene glycol intoxication. Clinical manifestations of the cranial neuropathy commonly involve lower motor neurons of the facial and bulbar nerves and are reversible over many months. **Reproductive Effects:** Reproductive function after intermediate-duration oral exposure to ethylene glycol has been tested in three multi-generation studies (one in rats and two in mice) and several shorter studies (15-20 days in rats and mice). In these studies, effects on fertility, foetal viability, and male reproductive organs were observed in mice, while the only effect in rats was an increase in gestational duration.

Developmental Effects: The developmental toxicity of ethylene glycol has been assessed in several acute-duration studies using mice, rats, and rabbits. Available studies indicate that malformations, especially skeletal malformations occur in both mice and rats exposed during gestation; mice are apparently more sensitive to the developmental effects of ethylene glycol. Other evidence of embyrotoxicity in laboratory animals exposed to ethylene glycol exposure includes reduction in foetal body weight. **Cancer:** No studies were located regarding cancer effects in humans or animals after dermal exposure to ethylene glycol. **Genotoxic Effects:** Studies in humans have not addressed the genotoxic effects of ethylene glycol. However, available *in vivo* and *in vitro* laboratory studies provide consistently negative genotoxicity results for ethylene glycol.

Acute Toxicity	~	Carcinogenicity	×
Skin Irritation/Corrosion	~	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species		Value	Source
Kent Graphic Fineliner & Brush Pen Set 7pc	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Val	ue	Source
	EC50(ECx)	Not Available	Algae or other aquatic plants	650	00-7500mg/l	1
ethylene glycol	LC50	96h	Fish	>10	0000mg/l	1
	EC50	48h	Crustacea	>10	00mg/l	2
	EC50	96h	Algae or other aquatic plants	650	00-13000mg/l	1
to statute and also be also	Endpoint	Test Duration (hr)	Species		Value	Source
isotridecyl alcohol, ethoxylated	Not Available	Not Available	Not Available		Not Available	Not Available
Legend:	Extracted from	1. IUCLID Toxicity Data 2. Euro	pe ECHA Registered Substances - Ecotor	kicological Info	rmation - Aqu	atic Toxicií
	4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data					

 $\label{total conditions} To xic to a quatic organisms, may cause long-term adverse effects in the aquatic environment.$

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For surfactants:

Environmental fate:

Octanol/water partition coefficients cannot easily be determined for surfactants because one part of the molecule is hydrophilic and the other part is hydrophobic. Consequently they tend to accumulate at the interface and are not extracted into one or other of the liquid phases. As a result surfactants are expected to transfer slowly, for example, from water into the flesh of fish. During this process, readily biodegradable surfactants are expected to be metabolised rapidly during the process of bioaccumulation. This was emphasised by the OECD Expert Group stating that chemicals are not to be considered to show bioaccumulation potential if they are readily biodegradable.

Surfactants show a complex solubility behaviour due to aggregation. The monomer concentration, and hence the thermodynamic activity, reaches a limiting value at the critical micelle concentration (CMC). It remains approximately constant as the total concentration is further increased. For ecotoxicological models requiring a solubility value, the critical micelle concentration is therefore the appropriate parameter describing water solubility of surface active materials.

 Chemwatch: 5531-23
 Page 16 of 19
 Issue Date: 01/03/2022

 Version No: 2.1
 Frint Date: 03/03/2022

Kent Graphic Fineliner & Brush Pen Set 7pc

Surfactants can form dispersions or emulsions in which the bioavailablity for aquatic toxicity studies is difficult to ascertain, even with careful solution preparation. Micelle formation can result in an overestimation of the bioavailable fraction even when "solutions" are apparently formed. This presents significant problems of interpretation of aquatic toxicity test results for surface active materials. The so-called the critical micelle concentration (CMC) is is related to surface tension produced by the substance and is the key value for actual water solubility of the substance.

Several anionic and nonionic surfactants have been investigated to evaluate their potential to bioconcentrate in fish. BCF values (BCF - bioconcentration factor) ranging from 1 to 350 were found. These are absolute maximum values, resulting from the radiolabelling technique used. In all these studies, substantial oxidative metabolism was found resulting in the highest radioactivity in the gall bladder. This indicates liver transformation of the parent compound and biliary excretion of the metabolised compounds, so that "real" bioconcentration is overstated. After correction it can be expected that "real" parent BCF values are one order of magnitude less than those indicated above, i.e. "real" BCF is <100. Therefore the usual data used for classification by EU directives to determine whether a substance is "Dangerous to the "Environment" has little bearing on whether the use of the surfactant is environmentally acceptable.

Ecotoxicity:

Surfactant should be considered to be toxic (EC50 and LC50 values of < 10 mg/L) to aquatic species under conditions that allow contact of the chemicals with the organisms. The water solubility of the chemicals does not impact the toxicity except as it relates to the ability to conduct tests appropriately to obtain exposure of the test species. The acute aquatic toxicity generally is considered to be related to the effects of the surfactant properties on the organism and not to direct chemical toxicity.

for ethylene glycol: log Kow: -1.93- -1.36 Half-life (hr) air: 24

BOD 5: 0.15-0.81,12%

Henry's atm m3 /mol: 6.00E-08

COD: 1.21-1.29 ThOD: 1.26 BCF: 10-190

In the atmosphere ethylene glycol exists mainly in the vapour phase. It is degraded in the atmosphere by reaction with photochemically produced hydroxy radicals (estimated half-life 24-50 hours).

Ethylene glycol does not concentrate in the food chain.

Environmental fate:

Ethylene glycol has a low vapour pressure (7.9 Pa at 20 C); it is expected to exist almost entirely in the vapour phase if released to the atmosphere. The Henry's law constant for ethylene glycol is 1.41 x 10-3 or 6.08 x 10-3 Pa.m3/mol, depending on method of calculation, indicating a low capacity for volatilisation from water bodies or soil surfaces.

Ethylene glycol adsorbed onto silica gel and irradiated with light (wavelength >290 nm) degraded by 12.1% over 17 h . Photodegradation is not expected, as the molecule should not absorb at these wavelengths; the mechanism of this breakdown is, therefore, unknown. Estimated half-life in the atmosphere for reaction with hydroxyl radicals from various reports is 2.1 days , 8-84 h or 1 day.

Ethylene glycol released to the atmosphere will be degraded by reaction with hydroxyl radicals; the half-life for the compound in this reaction has been estimated at between 0.3 and 3.5 days. No hydrolysis of ethylene glycol is expected in surface waters.

The compound has little or no capacity to bind to particulates and will be mobile in soil. Soil partition coefficients (log Koc) of 0-0.62 were determined. Migration rates in five soil types were measured at between 4 and 27 cm per 12 h

The low octanol/water partition coefficient (log Kow -1.93 to -1.36) and measured bioconcentration factors in a few organisms indicate low capacity for bioaccumulation. Bioconcentration factors of 190 for the green algae (Chlorella fusca), up to 0.27 in specific tissues of the crayfish (Procambarus sp.), and 10 for the golden orfe (Leuciscus idus melanotus) confirm low bioaccumulation.

Ethylene glycol is readily biodegradable in standard tests using sewage sludge. Many studies show biodegradation under both aerobic and anaerobic conditions. Some studies suggest a lag phase before degradation, but many do not. Degradation occurs in both adapted and unadapted sludges. Rapid degradation has been reported in surface waters (less in salt water than in fresh water), groundwater, and soil inocula. Several strains of microorganisms capable of utilising ethylene glycol as a carbon source have been identified.

Ethylene glycol has been identified as a metabolite of the growth regulator ethylene in a number of higher plants and as naturally occurring in the edible fungus Tricholoma matsutake

Ecotoxicity:

Fish LC50 (96 h):118-550 mg/L

Ethylene glycol has generally low toxicity to aquatic organisms. Toxic thresholds for microorganisms are above 1000 mg/litre. EC50s for growth in microalgae are 6500 mg/litre or higher. Acute toxicity tests with aquatic invertebrates where a value could be determined show LC50s above 20 000 mg/litre, and those with fish show LC50s above 17 800 mg/litre. An amphibian test showed an LC50 for tadpoles at 17 000 mg/litre. A no-observed-effect concentration (NOEC) for chronic tests on daphnids of 8590 mg/litre (for reproductive end-points) has been reported. A NOEC following short-term exposure of fish has been reported at 15 380 mg/litre for growth. Tests using deicer containing ethylene glycol showed greater toxicity to aquatic organisms than observed with the pure compound, indicating other toxic components of the formulations. Laboratory tests exposing aquatic organisms to stream water receiving runoff from airports have demonstrated toxic effects and death. Field studies in the vicinity of an airport have reported toxic signs consistent with ethylene glycol poisoning, fish kills, and reduced biodiversity. These effects cannot definitively be ascribed to ethylene glycol. Terrestrial organisms are much less likely to be exposed to ethylene glycol and generally show low sensitivity to the compound. Concentrations above 100 000 mg/litre were needed to produce toxic effects on yeasts and fungi from soil. Very high concentrations and soaking of seeds produced inhibition of germination in some experiments; these are not considered of environmental significance. A no-observed-effect level (NOEL) for orally dosed ducks at 1221 mg/kg body weight and reported lethal doses for poultry at around 8000 mg/kg body weight indicate low toxicity to birds.

DO NOT discharge into sewer or waterways.

Persistence and degradability Ingredient Persistence: Water/Soil Persistence: Air ethylene glycol LOW (Half-life = 24 days) LOW (Half-life = 3.46 days)

Bioaccumulative potential

Ingredient	Bioaccumulation		

Version No: 2.1

Page 17 of 19 Kent Graphic Fineliner & Brush Pen Set 7pc

Issue Date: 01/03/2022 Print Date: 03/03/2022

Ingredient	Bioaccumulation
ethylene glycol	LOW (BCF = 200)

Mobility in soil

Ingredient	Mobility
ethylene glycol	HIGH (KOC = 1)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging

disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ▶ Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- · Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
ethylene glycol	Not Available
isotridecyl alcohol, ethoxylated	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
ethylene glycol	Not Available

Kent Graphic Fineliner & Brush Pen Set 7pc

Issue Date: 01/03/2022 Print Date: 03/03/2022

Product name Ship Type isotridecyl alcohol, Not Available ethoxylated

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

ethylene glycol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

isotridecyl alcohol, ethoxylated is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (ethylene glycol; isotridecyl alcohol, ethoxylated)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (isotridecyl alcohol, ethoxylated)
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	01/03/2022
Initial Date	01/03/2022

SDS Version Summary

Version	Date of Update	Sections Updated
2.1	01/03/2022	Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Appearance, Chronic Health, Classification, Disposal, Engineering Control, Environmental, Exposure Standard, Fire Fighter (extinguishing media), Fire Fighter (fire/explosion hazard), Fire Fighter (fire fighting), Fire Fighter (fire incompatibility), First Aid (eye), First Aid (inhaled), First Aid (skin), First Aid (swallowed), Handling Procedure, Instability Condition, Personal Protection (other), Personal Protection (Respirator), Personal Protection (eye), Personal Protection (hands/feet), Physical Properties, Spills (major), Spills (minor), Storage (storage incompatibility), Storage (storage requirement), Storage (suitable container), Supplier Information, Toxicity and Irritation (Other), Transport, Use

Chemwatch: 5531-23 Page **19** of **19** Issue Date: 01/03/2022 Version No: 2.1 Print Date: 03/03/2022

Kent Graphic Fineliner & Brush Pen Set 7pc

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TI V: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value **BCF**: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.