Kent Essential Sketching and Drawings Jasco Pty Limited

Chemwatch: **7980-67** Version No: **2.1**

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Chemwatch Hazard Alert Code: 4

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025 L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Kent Essential Sketching and Drawings	
Chemical Name	Not Applicable	
Synonyms	0162230 KENT ESSENTIALS BASIC DRAWING SET 9 (FSC MIX CREDIT); 0166780 KENT ESSENTIALS GRAPHITE SKETCH SET 8 (FSC MIX CREDIT); 0166790 KENT ESSENTIALS SKETCHING & DRAWING SET 10 (FSC MIX CREDIT); 0166800 KENT ESSENTIALS CHARCOAL SET 4 (FSC MIX CREDIT); 0166820 KENT ESSENTIALS SKETCHING & DRAWING SET 27 (FSC MIX CREDIT)	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Use according to manufacturer's directions.
--------------------------	---

Details of the manufacturer or importer of the safety data sheet

Registered company name	Jasco Pty Limited	
Address	1-5 Commercial Road Kingsgrove NSW 2208 Australia	
Telephone	61 2 9807 1555	
Fax	Not Available	
Website	www.jasco.com.au	
Email	quickinfo@jasco.com.au	

Emergency telephone number

Association / Organisation	Australian Poisons Centre	CHEMWATCH EMERGENCY RESPONSE (24/7)
Emergency telephone number(s)	13 11 26 (24/7)	+61 1800 951 288 (ID#: 7980-67)
Other emergency telephone number(s)	Not Available	+61 3 9573 3188

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification ^[1]	Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Carcinogenicity Category 1A, Specific Target Organ Toxicity - Repeated Exposure Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

Signal word

Danger

Version No: 2.1

Page 2 of 23

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

Hazard statement(s)

H319	Causes serious eye irritation.
H335	May cause respiratory irritation.
H350	May cause cancer.
Н373	May cause damage to organs through prolonged or repeated exposure.

Precautionary statement(s) Prevention

P260	Do not breathe dust/fume.	
P271	Use only outdoors or in a well-ventilated area.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P202	Do not handle until all safety precautions have been read and understood.	
P264	Wash all exposed external body areas thoroughly after handling.	

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

No further product hazard information.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1332-58-7	5-70	kaolin
7782-42-5	10-87	graphite
8002-74-2	0-35	paraffin wax
61789-97-7	0-8	tallow
1333-86-4	0-15	carbon black
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eves:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- ▶ Seek medical attention without delay; if pain persists or recurs seek medical attention.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Eye Contact

For THERMAL burns: • Do NOT remove contact lens

- Lay victim down, on stretcher if available and pad **BOTH** eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye.
- ▶ Seek urgent medical assistance, or transport to hospital.

Chemwatch: 7980-67 Page 3 of 23

If skin contact occurs:

Version No: 2.1

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

▶ Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. • Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth. DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further injury. DO NOT break blister or remove solidified material. Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain. For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth. ▶ DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances. Water may be given in small quantities if the person is conscious. Alcohol is not to be given under any circumstances. Reassure. Treat for shock by keeping the person warm and in a lying position. ▶ Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient. For thermal burns: Decontaminate area around burn. ▶ Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) ▶ Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. Use compresses if running water is not available. Cover with sterile non-adhesive bandage or clean cloth. Skin Contact ▶ Do NOT apply butter or ointments; this may cause infection. • Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) ▶ Cool the burn by immerse in cold running water for 10-15 minutes. Use compresses if running water is not available. ▶ Do NOT apply ice as this may lower body temperature and cause further damage. Do NOT break blisters or apply butter or ointments; this may cause infection. ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): Lay the person flat. ▶ Elevate feet about 12 inches. • Elevate burn area above heart level, if possible. Cover the person with coat or blanket. Seek medical assistance. For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave Separate burned toes and fingers with dry, sterile dressings. • Do not soak burn in water or apply ointments or butter; this may cause infection. ▶ To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. Have a person with a facial burn sit up. • Check pulse and breathing to monitor for shock until emergency help arrives. • If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid Inhalation procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Immediately give a glass of water. Ingestion First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

- Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product
- In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases.
- High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement.

NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes.

SECTION 5 Firefighting measures

Extinguishing media

Version No: 2.1

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

Use of carbon tetrachloride to extinguish a wax fire produced an explosion. It is postulated that to a violent reaction between unsaturated wax components and carbon tetrachloride initiated by free radicals from decomposing peroxides might have occurred; alternately contact of cold water with the molten material might have lead to a vapour explosion.

• Sand, dry powder extinguishers or other inerts should be used to smother dust fires.

At temperatures above 1500 C, carbon, graphite or graphene reacts with substances containing oxygen, including water and carbon dioxide. In case of intensely hot fires sand should be used to cover and isolate these materials.

Do NOT direct a solid stream of water or foam into burning molten material; this may cause spattering and spread the fire.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may

Advice for firefighters

Alert Fire Brigade and tell them location and nature of hazard.

Wear breathing apparatus plus protective gloves.

- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard

Fire Fighting

- Combustible solid which burns but propagates flame with difficulty: it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC).
- ▶ When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts.
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- ▶ Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- ▶ Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1-meter/sec.
- A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source.
- ▶ One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled: this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours).
- Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases.

Combustion products include:

carbon monoxide (CO)

carbon dioxide (CO2)

metal oxides

other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

CARE: Contamination of heated / molten liquid with water may cause violent steam explosion, with scattering of hot contents. A fire in bulk finely divided carbon may not be obviously visible unless the material is disturbed and sparks appear. A straw broom may be useful to produce the disturbance.

Explosion and Ignition Behaviour of Carbon Black with Air

Lower Limit for Explosion:	50 g/m3 (carbon black in air)
Maximum Explosion Pressure:	10 bar

Version No: 2.1

Page 5 of 23 Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

Maximum Rate of Pressure Rise:	30-100 bar/sec
Minimum Ignition Temperature:	315 deg. C.
Ignition Energy:	>1 kJ
Glow Temperature:	500 deg. C. (approx.)

Notes on Test Methods:

Tests 1, 2 and 3 were conducted by Bergwerkeschaftliche Versuchstrecke, Dortmunde-Derne, using a 1 m3 vessel with two chemical igniters having an intensity of 5000 W.S.

Tests 1 and 2 results are confirmed by information in the Handbook of Powder Technology, Vol. 4 (P. Field)

In Test 4, a modified Godbert-Greenwald furnace was used. See U.S. Bureau of Mines, Report 5624, 1960, p.5, "Lab Equipment and Test Procedures".

Test 5 used a 1 m3 vessel with chemical igniters of variable intensity.

Test 6 was conducted in a laboratory oven. Active glowing appeared after 3 minutes exposure.

(European Committee for Biological Effects of Carbon Black) (2/84)

HAZCHEM

Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up waste regularly and abnormal spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (H-Class HEPA type) (consider explosion-proof machines designed to be grounded during storage and use). H-Class HEPA filtered industrial vacuum cleaners should NOT be used on wet materials or surfaces. Dampen with water to prevent dusting before sweeping. Place in suitable containers for disposal.
Major Spills	 Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

Graphite:

- · is a good conductor of electricity; avoid contact with electrical circuitry.
- \cdot is a highly lubricious material and may present a slip hazard if spilled on pedestrian surfaces.

NOTE:

- Wet, activated carbon removes oxygen from the air thus producing a severe hazard to workers inside carbon vessels and in enclosed or confined spaces where activated carbons might accumulate.
- Before entry to such areas, sampling and test procedures for low oxygen levels should be undertaken; control conditions should be established to ensure the availability of adequate oxygen supply.
- The greatest potential for injury caused by molten materials occurs during purging of machinery (moulders, extruders etc.)
- It is essential that workers in the immediate area of the machinery wear eye and skin protection (such as full face, safety glasses, heat resistant gloves, overalls and safety boots) as protection from thermal burns.
- Fumes or vapours emitted from hot melted materials, during converting operations, may condense on overhead metal surfaces or exhaust ducts. The condensate may contain substances which are irritating or toxic. Avoid contact of that material with the skin. Wear rubber or other impermeable gloves when cleaning contaminated areas.
- Avoid process temperatures above decomposition temperatures. Overheating may occur at excessively high cylinder heats, overworking of the melt by wrong screw configuration, or by long dwell time in the machine. Under such conditions, thermal emissions and heat-degradation products might, without proper ventilation, reach hazardous concentrations in the converting area. Hot purgings should be collected only as thin flat strands to allow for rapid cooling. Hot purgings should be cooled by quenching in water in a well-ventilated area.
- Electrostatic discharge may be generated during pumping this may result in fire.

Chemwatch: **7980-67**Part Number:
Version No: **2.1**

Page 6 of 23

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

- · Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- · Avoid splash filling.
- · Do NOT use compressed air for filling discharging or handling operations.
- · Wait 2 minutes after tank filling (for tanks such as those on
- · road tanker vehicles) before opening hatches or manholes.
- \cdot Wait 30 minutes after tank filling (for large storage tanks)
- · before opening hatches or manholes. Even with proper
- grounding and bonding, this material can still accumulate an
- · electrostatic charge. If sufficient charge is allowed to
- · accumulate, electrostatic discharge and ignition of flammable
- · air-vapour mixtures can occur. Be aware of handling
- \cdot operations that may give rise to additional hazards that result
- · from the accumulation of static charges. These include but are
- · not limited to pumping (especially turbulent flow), mixing,
- · filtering, splash filling, cleaning and filling of tanks and
- $\boldsymbol{\cdot}$ containers, sampling, switch loading, gauging, vacuum truck
- $\boldsymbol{\cdot}$ operations, and mechanical movements. These activities may
- lead to static discharge e.g. spark formation. Restrict line
 velocity during pumping in order to avoid generation of
- · electrostatic discharge (= 1 m/s until fill pipe submerged to
- · twice its diameter, then = 7 m/s). Avoid splash filling.
- \cdot Do NOT use compressed air for filling, discharging, or handling operations
- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- ▶ DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended
 in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including
 secondary explosions)
- ▶ Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- ▶ Establish good housekeeping practices.
- ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- ▶ Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- ▶ Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

Other information

Carbon and charcoal may be stabilised for storage and transport, without moistening, by treatment with hot air at 50 deg. C.. Use of oxygen-impermeable bags to limit oxygen and moisture uptake has been proposed. Surface contamination with oxygenated volatiles may generate a heat of reaction (spontaneous heating). Should stored product reach 110 deg. C., stacked bags should be pulled apart with each bag separated by an air space to permit cooling away from other combustible materials.

- Store in original containers.
- Keep containers securely sealed.
- ▶ Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:

Version No: 2.1

Page 7 of 23

Kent Essential Sketching and Drawings

Initial Date: **25/09/2025** Revision Date: **25/09/2025**

Print Date: **25/09/2025**Print Date: **01/10/2025**

- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container

Storage incompatibility

- ▶ Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.
- CARE: Water in contact with heated material may cause foaming or a steam explosion with possible severe burns from wide scattering of hot material. Resultant overflow of containers may result in fire.
- · Oil leaks in a pressurized circuit may result in a fine flammable spray (the lower flammability limit for oil mist is reached for a concentration of about 45 g/m3
- Autoignition temperatures may be significantly lower under particular conditions (slow oxidation on finely divided materials..

 For carbon powders:
- Avoid oxidising agents, reducing agents.
- Reaction with finely divided metals, bromates, chlorates, chloramine monoxide, dichlorine oxide, iodates, metal nitrates, oxygen difluoride, peroxyformic acid, peroxyfuroic acid and trioxygen difluoride may result in an exotherm with ignition or explosion. Less active forms of carbon will ignite or explode on suitably intimate contact with oxygen, oxides, peroxides, oxosalts, halogens, interhalogens and other oxidising species.
- Explosive reaction with ammonium nitrate, ammonium perchlorate, calcium hypochlorite and iodine pentoxide may occur following heating. Carbon may react violently with nitric acid and may be explosively reactive with nitrogen trifluoride at reduced temperatures. In the presence of nitrogen oxide, incandescence and ignition may occur. Finely divided or highly porous forms of carbon, exhibiting a high surface area to mass (up to 2000 m2/g) may function as unusually active fuels possessing both adsorptive and catalytic properties which accelerate the release of energy in the presence of oxidising substances. Dry metal-impregnated charcoal catalysts may generate sufficient static, during handling, to cause ignition.
- Graphite in contact with liquid potassium, rubidium or caesium at 300 deg. C. produces intercalation compounds (C8M) which ignite in air and may react explosively with water. The fusion of powdered diamond and potassium hydroxide may produce explosive decomposition.
- Activated carbon, when exposed to air, represents a potential fire hazard due to a high surface area and adsorptive capacity. Freshly prepared material may ignite spontaneously in the presence of air especially at high humidity. Spontaneous combustion in air may occur at 90-100 deg. C. The presence of moisture in air facilitates the ignition. Drying oils and oxidising oils promote spontaneous heating and ignition; contamination with these must be avoided. Unsaturated drying oils (linseed oil etc.) may ignite following adsorption owing to an enormous increase in the surface area of oil exposed to air; the rate of oxidation may also be catalysed by metallic impurities in the carbon. A similar, but slower effect occurs on fibrous materials such as cotton waste. Spontaneous heating of activated carbon is related to the composition and method of preparation of the activated carbon. Free radicals, present in charcoal, are responsible for autoignition. Self-heating and autoignition may also result from adsorption of various vapours and gases (especially oxygen). For example, activated carbon auto- ignites in flowing air at 452-518 deg. C.; when the base, triethylenediamine, is adsorbed on the carbon (5%) the autoignition temperature is reduced to 230-260 deg. C.. An exotherm is produced at 230-260 deg. C., at high flow rates of air, although ignition did not occur until 500 deg. C.. Mixtures of sodium borohydride with activated carbons, in air, promote the oxidation of sodium borohydride, producing a self-heating reaction that may result in the ignition of charcoal and in the production of hydrogen through thermal decomposition of the borohydride.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	kaolin	Kaolin	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	graphite	Graphite (all forms except fibres) (respirable dust) (natural & synthetic)	3 mg/m3	Not Available	Not Available	(e) Containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	paraffin wax	Paraffin wax (fume)	2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	carbon black	Carbon black	3 mg/m3	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
kaolin	Not Available	Not Available
graphite	1,250 mg/m3	Not Available
paraffin wax	Not Available	Not Available
tallow	Not Available	Not Available
carbon black	1,750 mg/m3	Not Available

Page 8 of 23

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

MATERIAL DATA

For kaolin:

Version No: 2.1

Kaolin dust appears to have fibrogenic potential even in the absence of crystalline silica. Kaolinosis can exist as simple and complicated forms with the latter often associated with respiratory symptoms. Crystalline silica enhances the severity of the pneumoconiosis.

For paraffin waxes and hydrocarbon waxes a complex combination of hydrocarbons obtained from petroleum fractions by solvent crystallisation:

TLV TWA: 2 mg/m3

The concentration of respirable dust for application of this limit is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative lognormal function with a median aerodynamic volume of 4.0 um (+-) 0.3 um and with a geometric standard deviation of 1.5 um (+-) 0.1 um, i.e., less than 5 um.

The TLV-TWA is thought to be sufficiently low to prevent changes in pre- employment chest X-ray findings in exposed employees, in some cases following decades of exposure. The limit is thought to be protective against disabling pneumoconiosis.

WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS

For graphite:

Graphite pneumoconiosis resembles coal workers' pneumoconiosis. Data indicate that the higher the crystalline silica content of graphite the more likely the disease will increase in severity. The presence of anthracite coal in the production of some synthetic grades of graphite appears to make arbitrary the use of the term. "synthetic". "artificial" or "natural".

The TLV-TWA for carbon black is recommended to minimise complaints of excessive dirtiness and applies only to commercially produced carbon blacks or to soots derived from combustion sources containing absorbed polycyclic aromatic hydrocarbons (PAHs). When PAHs are present in carbon black (measured as the cyclohexane-extractable fraction) NIOSH has established a REL-TWA of 0.1 mg/m3 and considers the material to be an occupational carcinogen.

The NIOSH REL-TWA was "selected on the basis of professional judgement rather than on data delineating safe from unsafe concentrations of PAHs".

This limit was justified on the basis of feasibility of measurement and not on a demonstration of its safety.

The International Agency for Research on Cancer (IARC) has classified occupational exposures to **respirable** (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite. Crystalline silica is also known to cause silicosis, a non-cancerous lung disease.

Intermittent exposure produces; focal fibrosis, (pneumoconiosis), cough, dyspnoea, liver tumours.

* Millions of particles per cubic foot (based on impinger samples counted by light field techniques).

NOTE: the physical nature of quartz in the product determines whether it is likely to present a chronic health problem. To be a hazard the material must enter the breathing zone as respirable particles.

Animals exposed by inhalation to 10 mg/m3 titanium dioxide show no significant fibrosis, possibly reversible tissue reaction. The architecture of lung air spaces remains intact.

- The label on a package containing 1% or more of titanium oxide with aerodynamic diameter equal or below 10 microns shall bear the following statement: EUH211 "Warning! Hazardous respirable droplets may be formed when sprayed. Do NOT breathe spray or mist
- The label on the packaging of solid mixtures containing 1% or more of titanium dioxide shall bear the following statement: EUH212" "Warning! Hazardous respirable dust may be formed when used. Do not breathe dust".

In addition, the label on the packaging of liquid and solid mixtures not intended for the general public and not classified as hazardous which are labelled EUH211 or EU212 shall bear statement EUH210: "Safety data sheet available on request."

The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 um (+-) 0.3 um and with a geometric standard deviation of 1.5 um (+-) 0.1 um, i.e..generally less than 5 um.

Exposure controls

Appropriate engineering controls

For molten materials:

Provide mechanical ventilation; in general such ventilation should be provided at compounding/ converting areas and at fabricating/ filling work stations where the material is heated. Local exhaust ventilation should be used over and in the vicinity of machinery involved in handling the molten material.

Keep dry!!

Processing temperatures may be well above boiling point of water, so wet or damp material may cause a serious steam explosion if used in unvented equipment.

Exhaust ventilation should be designed to prevent accumulation and recirculation in the workplace and safely remove carbon black from the air

Note: Wet, activated carbon removes oxygen from the air and thus presents a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such areas sampling and test procedures for low oxygen levels should be undertaken and control conditions set up to ensure ample oxygen availability.[Linde]

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Version No: 2.1

Page 9 of 23

Kent Essential Sketching and Drawings

Initial Date: **25/09/2025** Revision Date: **25/09/2025**

Print Date: **01/10/2025**

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50- 100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100- 200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200- 500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500- 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

Hands/feet protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Chemwatch: 7980-67 Page 10 of 23
Part Number:

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. When handling hot materials wear heat resistant, elbow length gloves. ▶ Rubber gloves are not recommended when handling hot objects, materials Protective gloves eg. Leather gloves or gloves with Leather facing Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. polychloroprene. nitrile rubber. butvl rubber. ▶ fluorocaoutchouc. ▶ polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. **Body protection** See Other protection below When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure. CAUTION: Vapours may be irritating. Overalls. Other protection P.V.C apron. Barrier cream. Skin cleansing cream.

Respiratory protection

Version No: 2.1

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Eve wash unit.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A P1 Air-line*	-	A PAPR-P1
up to 50 x ES	Air-line**	A P2	A PAPR-P2
up to 100 x ES	-	A P3	-
		Air-line*	-
100+ x ES	-	Air-line**	A PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

Where significant concentrations of the material are likely to enter the breathing zone, a Class P3 respirator may be required.

Class P3 particulate filters are used for protection against highly toxic or highly irritant particulates.

Filtration rate: Filters at least 99.95% of airborne particles

Suitable for:

- $\cdot \ \text{Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.}$
- $\cdot \ \text{Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.}$
- · Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS
- \cdot Highly toxic particles e.g. Organophosphate Insecticides, Radionuclides, Asbestos

Note: P3 Rating can only be achieved when used with a Full Face Respirator or Powered Air-Purifying Respirator (PAPR). If used with any other respirator, it will only provide filtration protection up to a P2 rating.

For molten materials:

76a-p()

Page 11 of 23

Kent Essential Sketching and Drawings

Initial Date: **25/09/2025** Revision Date: **25/09/2025** Print Date: **01/10/2025**

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Colourless solid.		
Physical state	Solid	Relative density (Water = 1)	Not Available
Odour	No Odour	Partition coefficient n- octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

a) Acute Toxicity	Based on available data, the classification criteria are not met.
b) Skin Irritation/Corrosion	Based on available data, the classification criteria are not met.
c) Serious Eye Damage/Irritation	There is sufficient evidence to classify this material as eye damaging or irritating
d) Respiratory or Skin sensitisation	Based on available data, the classification criteria are not met.
e) Mutagenicity	Based on available data, the classification criteria are not met.
f) Carcinogenicity	There is sufficient evidence to classify this material as carcinogenic
g) Reproductivity	Based on available data, the classification criteria are not met.
h) STOT - Single Exposure	There is sufficient evidence to classify this material as toxic to specific organs through single exposure
i) STOT - Repeated Exposure	There is sufficient evidence to classify this material as toxic to specific organs through repeated exposure

Version No: 2.1

Page 12 of 23

Kent Essential Sketching and Drawings

Initial Date: **25/09/2025** Revision Date: **25/09/2025** Print Date: **01/10/2025**

j) Aspiration Hazard

Based on available data, the classification criteria are not met.

n re m g

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhaled

Processing for an overly long time or processing at overly high temperatures may cause generation and release of highly irritating vapours, which irritate eyes, nose, throat, causing red itching eyes, coughing, sore throat.

Inhalation hazard is increased at higher temperatures.

Although carbon itself has no toxic action, associated impurities may be toxic. Iodine is often found as an impurity and air-borne carbon dusts, as a result, may produce irritation of the mucous membranes, the eyes, and skin. Symptoms of exposure may include coughing, irritation of the nose and throat and burning of the eyes.

Effects on lungs are significantly enhanced in the presence of respirable particles. Overexposure to respirable dust may produce wheezing, coughing and breathing difficulties leading to or symptomatic of impaired respiratory function.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

The absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. n-Paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins.

Results of extraction and migration tests that have been performed on waxes and wax-bearing products indicate that hydrocarbon waxes consumed in the diet are unlikely to be absorbed or metabolised in detectable or significant amounts. Hydrocarbon waxes are less likely to be toxic than hydrocarbon oils because:

- they generally consist of longer-chain hydrocarbons than the hydrocarbons in oils and,thus, are solids at ambient and body temperatures
- they cannot be readily dispersed as emulsions at body temperatures,
- · migration tendencies and solubility in most media is minimal or zero.

Ingestion

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Ingestion of finely divided carbon may produce gagging and constipation. Aspiration does not appear to be a concern as the material is generally regarded as inert and is often used as a food additive. Ingestion may produce a black stool.

Molten material is capable of causing burns.

The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives.

Open cuts, abraded or irritated skin should not be exposed to this material

The material may accentuate any pre-existing dermatitis condition

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Skin Contact

The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either:

- ▶ produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Eye

Symptoms of exposure by the eye to carbon particulates include irritation and a burning sensation. Following an industrial explosion, fine particles become embedded in the cornea and conjunctiva resulting in an inflammation which persisted for 2-3 weeks. Some particles remained permanently producing a punctate purplish-black discolouration.

Limited evidence or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may

Chronic

On the basis of epidemiological data, it has been concluded that prolonged inhalation of the material, in an occupational setting, may produce cancer in humans.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following subacute (28 day) or chronic (two-year) toxicity tests.

Prolonged or repeated inhalation of dust may result in pneumoconiosis (lung disease caused by inhalation dust).

Version No: 2.1

Page 13 of 23

Kent Essential Sketching and Drawings

Initial Date: **25/09/2025** Revision Date: **25/09/2025**

Print Date: **01/10/2025**

Graphite workers have reported symptoms of headaches, coughing, depression, low appetite, dyspnoea (difficult breathing) and black sputum.

A number of studies indicate that graphitosis is a progressive and disabling disease and that the presence of crystalline silica and some silicates as graphite impurities have a pronounced synergistic effect.

Workers suffering from graphite pneumoconiosis have generally worked in the industry for long periods, i.e. 10 years or more, although some cases have been reported after as little as four years.

Data indicate the higher the crystalline silica content of graphite the greater is the severity of the pneumoconiosis.

Pre-employment and periodic examinations should be directed towards detecting significant respiratory disease through chest X-rays and pulmonary function tests

The health hazards associated with bentonite, kaolin, and common clay, which are commercially important clay products, as well as the related phyllosilicate minerals montmorillonite, kaolinite, and illite, have an extensive literature. Fibrous clay minerals, such as sepiolite, attapulgite, and zeolites, have a separate literature.

The biological effects of clay minerals are influenced by their mineral composition and particle size. The decreasing rank order of the potencies of quartz, kaolinite, and montmorillonite to produce lung damage is consistent with their known relative active surface areas and surface chemistry.

Clays are chemically all described as aluminosilicates; these are further classified as bentonite, kaolin and common clays. Bentonite is a rock formed of highly colloidal and plastic clays composed mainly of montmorillonite, a clay mineral of the smectite group.

Kaolin or china clay is a mixture of different minerals. Its main component is kaolinite; in addition, it frequently contains quartz, mica, feldspar, illite, and montmorillonite.

The main components of common clay and shale are illite and chlorite. Illite is also a component of ball clays. Illite closely resembles micas,

From the limited data available from studies on bentonite-exposed persons, retained montmorillonite appears to effect only mild nonspecific tissue changes, which are similar to those that have been described in the spectrum of changes of the "small airways mineral dust disease" (nodular peribronchiolar dust accumulations containing refractile material [montmorillonite] in association with limited interstitial fibrosis). In some of the studies, radiological abnormalities have also been reported

Long-term occupational exposures to bentonite dust may cause structural and functional damage to the lungs. However, available data are inadequate to conclusively establish a dose-response relationship or even a cause-and-effect relationship due to limited information on period and intensity of exposure and to confounding factors, such as exposure to silica and tobacco smoke.

Long-term exposure to kaolin may lead to a relatively benign pneumoconiosis, in an exposure-related fashion. known as kaolinosis. Deterioration of lung function has been observed only in cases with prominent radiological alterations. Based on data from china clay workers in the United Kingdom, it can be very roughly estimated that kaolin is at least an order of magnitude less potent than quartz.. Clearcut deterioration of respiratory function and related symptoms have been reported only in cases with prominent radiological findings.

The composition of the clay - i.e., quantity and quality of minerals other than kaolinite — is an important determinant of the effects. Bentonite, kaolin, and other clays often contain quartz, and exposure to quartz is causally related to silicosis and lung cancer. Statistically significant increases in the incidence of or mortality from chronic bronchitis and pulmonary emphysema have been reported after exposure to quartz.

The removal of clay particles from the lungs takes place by solubilisation in situ and by physical clearance.

In humans, there was a rapid initial clearance of 8% and 40% of aluminosilicate particles that were, respectively, 1.9 and 6.1 um in aerodynamic diameter from the lung region over 6 days. Thereafter, 4% and 11% of the two particle sizes were removed following a halftime of 20 days, and the rest with half-times of 330 and 420 days.

Ultrafine particles (<100 nm) have a high deposition in the nasal area; they can penetrate the alveolar/capillary barrier.

Epidemiological studies have indicated an increase in morbidity and mortality associated with an increase in airborne particulate matter, particularly in the ultrafine size range

An important determinant of the toxicity of clays is the content of quartz. The presence of quartz in the clays studied hampers reliable independent estimation of the fibrogenicity of other components of clays.

Single intratracheal injection into rodents of bentonite and montmorillonite with low content of quartz produced dose- and particle size-dependent cytotoxic effects, as well as transient local inflammation, the signs of which included oedema and, consequently, increased lung weight. After high doses of intratracheal kaolin (containing 8-65% quartz), fibrosis has been described in some studies, whereas at lower kaolin doses, no fibrosis has been observed in the few available studies.

There are limited data on the effects of multiple exposures of experimental animals to montmorillonite or bentonite. Mice maintained on diets containing 10% or 25% bentonite but otherwise adequate to support normal growth displayed slightly reduced growth rates, whereas mice maintained on a similar diet with 50% bentonite showed minimal growth and developed fatty livers and eventually fibrosis of the liver and benign hepatomas.

In vitro studies of the effects of bentonite on a variety of mammalian cell types usually indicated a high degree of cytotoxicity. Concentrations below 1.0 mg/ml of bentonite and montmorillonite particles less than 5 um in diameter caused membrane damage and even cell lysis, as well as functional changes in several types of cells.

No adequate studies are available on the carcinogenicity of bentonite. In an inhalation study and in a study using intrapleural injection, kaolin did not induce tumours in rats. No studies are available on the genotoxicity of clays.

Single, very limited studies did not demonstrate developmental toxicity in rats after oral exposure to bentonite or kaolin. Chronic dust inhalation of kaolin, as experienced in mineral extraction, has caused kaolinosis with heavy lung marking, emphysema, and nodular pneumoconiosis.

Evidence of kaolinosis (pneumoconiosis) was found in 9% of 553 Cornish china clay workers who had been exposed to kaolin dust for periods exceeding 5 years, whereas no kaolinosis was observed in workers exposed for less than 5 years. Workers in more heavily exposed jobs of milling, bagging and loading showed a prevalence of kaolinosis rising from 6% in those within between 5 and 15 years exposure to 23% in those exposed for more than 15 years. Workers intermittently and less heavily exposed in the older, outdated drying plants required 25 years of massive exposure before reaching the highest prevalence of 17%. Massive fibrosis was seen in four workers, and six workers needed antituberculosis chemotherapy. Preventative measures instituted include preemployment chest examination and approaches to the problem of dust control.

Sheer, G.; Brit. Jnl. Ind. Med. 21, pp 218-225, 1964

Implantation studies in rats show that paraffin oils may be tumourigen. As a general rule the highly refined paraffins contain a lower level of suspect polyaromatic hydrocarbons than less refined grades and also less than waxes derived from naphthenic base-stocks.

Chronic inhalation exposure of production workers has caused decreased pulmonary function ad myocardial dystrophy. There is suggestive but inconclusive evidence that carbon black containing polyaromatic hydrocarbons (PAHs) has been responsible for

Version No: 2.1

Page 14 of 23

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025

Print Date: 01/10/2025

induction of skin cancers in exposed workers.

Long term inhalation of carbon black can cause cough, phlegm, tiredness, chest pain and headache. Dermal, mucosal, or inhalation exposure can cause irritation.

Inhalation of carbon black by mice,rats and monkeys caused thickened alveolar walls, increased pulmonary collagen, right atrial and ventricular strain, hypertrophy of the right atrial and ventricular septum and increased heart weights. Although carbon black itself did not cause cancer in treated animals, carbon black containing polyaromatic hydrocarbons (PAHs) did cause cancer following chronic administration by all routes tested.

Epidemiological studies of workers in the carbon black producing industries of North America and Western Europe show no significant health effect due to occupational exposure to carbon black. Several other studies provide conflicting evidence. Early studies in the former USSR and Eastern Europe report respiratory diseases amongst workers exposed to carbon black, including bronchitis, pneumonia, emphysema and rhinitis. These studies are of questionable validity due to inadequate study design and methodology, lack of appropriate controls for cigarette smoking and other confounding factors such as concurrent exposure to carbon dioxide, coal oil and petroleum vapours. Moreover, review of these studies indicates that the concentrations of carbon black were greater than current occupational standards.

Carbon black may cause adverse pulmonary changes following prolonged or repeated inhalation of the dust; these include oral mucosal lesions, bronchitis and pneumoconiosis which may lead to lung tumours.

The body of evidence of carcinogenicity in animal studies comes from two chronic inhalation studies and two intratracheal instillation studies in rats, which showed significantly elevated rates of lung cancer in exposed animals. An inhalation study was tested on mice, but did not show significantly elevated rates of lung cancer in exposed animals. Epidemiologic data comes from three different cohort studies of carbon black production workers. Two studies, from the United Kingdom and Germany, with over 1,000 workers in each study group, showed elevated mortality from lung cancer in the carbon black workers. Another study of over 5,000 workers in the United States did not show elevated mortality from lung cancer in the carbon black workers. Newer findings of increased lung cancer mortality in an update from the UK study may suggest that carbon black could be a late-stage carcinogen. However, a more recent and larger study from Germany did not confirm this hypothesis that carbon black acts as a late-stage carcinogen.

In studies employing channel and furnace black, hamsters, mice, guinea pigs, rabbits and monkeys exposed to dusts for 7 hours/day, 5 days/week, at concentrations of 87.4 mg/m3 for channel black and 56.5 mg/m3 for furnace black, no malignancies were observed in any of the animals. Channel black had little if any absorbed polyaromatic hydrocarbons (PAHs) (as benzene extractables) whilst furnace black had 0.28%.

Several findings have strengthened the association between inflammation and cancer and between the particle surface area dose of carbon black and other poorly soluble low toxicity (PSLT) particles and the pulmonary inflammation response in mice and the proinflammatory effects in lung cells in vitro. Other evidence suggests that in addition to a cancer mechanism involving indirect genotoxicity through inflammation and oxidative stress, nanoparticles may act as direct carcinogens.

Carbon black appears to act like PSLT particles, which can elicit lung tumours in rats following prolonged exposure to sufficiently high concentrations of particles. Particle surface area dose was found to be most predictive of pulmonary inflammation and tumour response in rats when comparing the dose-response relationships for various types and sizes of PSLT including carbon black. Compared to fine PSLT, much lower concentrations of ultrafine PSLT (e.g. 2.5, 6.5 or 11.5 mg/m3 carbon black and ~10 mg/m3 ultrafine titanium dioxide) were associated with impaired clearance, persistent inflammation, and malignant lung tumours in chronic inhalation studies in rats. Most evidence suggests that carbon black and other PSLT-elicited lung tumours occurs through a secondary genotoxic mechanism, involving chronic inflammation and oxidative stress. Experimental studies have shown that when the particle lung dose reaches a sufficiently high concentration (e.g.,mass dose of ~0.5 mg fine-sized PSLT/g lung in rats), the alveolar macrophage-medicated clearance process begins to be impaired (complete impairment occurs at ~10 mg/g lung. Overloading of lung clearance is accompanied by pulmonary inflammation, leading to increased production of reactive oxygen and nitrogen species, depletion of antioxidants and/or impairment of other defense mechanisms, cell injury, cell proliferation, fibrosis, and as seen in rats, induction of mutations and eventually cancer. Rats appear to be more sensitive to carbon black and other PSLT than other rodent species. Although studies in humans have not shown a direct link between inhaled PSLT and lung cancer, many of the steps in the mechanism observed in rats have also been observed in humans who work in dusty jobs, including increased particle lung retention and pulmonary inflammation in workers exposed to coal dust or crystalline silica and elevated lung cancer has been observed in some studies of workers exposed to carbon black, crystalline silica, and diesel exhaust particles

Monkeys exposed to channel black for 1000-1500 hours showed evidence of electrocardiac changes indicative of right atrial and right ventricular strain. These changes increased progressively until after 10,000 hours of exposure, when the changes were marked. The authors of this study concluded that there was no significant effect due to prolonged exposure other than those expected from the accumulation of non-toxic dusts in the pulmonary system. Exposure to furnace black produced a similar picture although electrocardiographic change was first observed in monkeys after 2500 hours' exposure and marked atrial and right ventricular strain after 10,000 hours' exposure. The authors concluded that there was no significant effect due to prolonged exposure other than those expected from the accumulation of nontoxic dusts in the pulmonary system. Exposure to furnace black produced a similar picture although electrocardiographic change was first observed in monkeys after 2500 hours exposure and marked atrial and right ventricular strain after 10,000 hours exposure.

Chromatographic fractions of oily material extracted from carbon black have been shown to be carcinogenic whilst the unfractionated extracts are not. The activity of some carcinogens appear to be inhibited by carbon black itself. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. As the disease progresses, the cough produces stringy phlegm, vital capacity decreases further, and shortness of breath becomes more severe. Other signs or symptoms include changed breath sounds, reduced oxygen uptake during exercise, emphysema and rarely, pneumothorax (air in the lung cavity).

Removing workers from the possibility of further exposure to dust generally stops the progress of lung abnormalities. When there is high potential for worker exposure, examinations at regular period with emphasis on lung function should be performed. Inhaling dust over an extended number of years may cause pneumoconiosis, which is the accumulation of dusts in the lungs and the subsequent tissue reaction. This may or may not be reversible.

Version No: 2.1

Page 15 of 23

Kent Essential Sketching and Drawings

Initial Date: **25/09/2025** Revision Date: **25/09/2025**

rision Date: **25/09/2025** Print Date: **01/10/2025**

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

	TOXICITY	IRRITATION	
nt Essential Sketching and Drawings	Not Available	Not Available	
	TOXICITY	IRRITATION	
kaolin	Not Available	Not Available	
	TOXICITY	IRRITATION	
graphite	Inhalation (Rat) LC50: >2 mg/L4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: >200 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (Rodent - rabbit): 100mg/24H - Mild	
	Oral (Rat) LD50: >5000 mg/kg ^[1]	Eye (Rodent - rabbit): 50% - Mild	
paraffin wax		Eye: no adverse effect observed (not irritating) ^[1]	
		Skin (Rodent - rabbit): 500mg/24H - Mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
tallow	Oral (Rat) LD50: >18000 mg/kg ^[2]	Not Available	
	TOXICITY	IRRITATION	
carbon black	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: >2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
Legend:	1 Value obtained from Europe ECHA Registered Su	bstances - Acute toxicity 2. Value obtained from manufacturer's S	

Kent Essential Sketching and Drawings

For titanium dioxide:

Humans can be exposed to titanium dioxide via inhalation, ingestion or dermal contact. In human lungs, the clearance kinetics of titanium dioxide is poorly characterized relative to that in experimental animals. (General particle characteristics and host factors that are considered to affect deposition and retention patterns of inhaled, poorly soluble particles such as titanium dioxide are summarized in the monograph on carbon black.) With regard to inhaled titanium dioxide, human data are mainly available from case reports that showed deposits of titanium dioxide in lung tissue as well as in lymph nodes. A single clinical study of oral ingestion of fine titanium dioxide showed particle size-dependent absorption by the gastrointestinal tract and large interindividual variations in blood levels of titanium dioxide. Studies on the application of sunscreens containing ultrafine titanium dioxide to healthy skin of human volunteers revealed that titanium dioxide particles only penetrate into the outermost layers of the stratum corneum, suggesting that healthy skin is an effective barrier to titanium dioxide. There are no studies on penetration of titanium dioxide in compromised skin.

Respiratory effects that have been observed among groups of titanium dioxide-exposed workers include decline in lung function, pleural disease with plaques and pleural thickening, and mild fibrotic changes. However, the workers in these studies were also exposed to asbestos and/or silica.

No data were available on genotoxic effects in titanium dioxide-exposed humans.

Many data on deposition, retention and clearance of titanium dioxide in experimental animals are available for the inhalation route. Titanium dioxide inhalation studies showed differences — both for normalized pulmonary burden (deposited mass per dry lung, mass per body weight) and clearance kinetics — among rodent species including rats of different size, age and strain. Clearance of titanium dioxide is also affected by pre-exposure to gaseous pollutants or co-exposure to cytotoxic aerosols. Differences in dose rate or clearance kinetics and the appearance of focal areas of high particle burden have been implicated in the higher toxic and inflammatory lung responses to intratracheally instilled vs inhaled titanium dioxide particles. Experimental studies with titanium dioxide have demonstrated that rodents experience dose-dependent impairment of alveolar macrophagemediated clearance. Hamsters have the most efficient clearance of inhaled titanium dioxide. Ultrafine primary particles of titanium dioxide are more slowly cleared than their fine counterparts.

Titanium dioxide causes varying degrees of inflammation and associated pulmonary effects including lung epithelial cell injury, cholesterol granulomas and fibrosis. Rodents experience stronger pulmonary effects after exposure to ultrafine titanium dioxide particles compared with fine particles on a mass basis. These differences are related to lung burden in terms of particle surface area, and are considered to result from impaired phagocytosis and sequestration of ultrafine particles into the interstitium. Fine titanium dioxide particles show minimal cytotoxicity to and inflammatory/pro-fibrotic mediator release from primary human alveolar macrophages in vitro compared with other particles. Ultrafine titanium dioxide particles inhibit phagocytosis of alveolar macrophages in vitro at mass dose concentrations at which this effect does not occur with fine titanium dioxide. In-vitro studies with fine and ultrafine titanium dioxide and purified DNA show induction of DNA damage that is suggestive of the generation of reactive oxygen species by both particle types. This effect is stronger for ultrafine than for fine titanium oxide, and is markedly enhanced by exposure to simulated sunlight/ultraviolet light.

Animal carcinogenicity data

Chemwatch: **7980-67** Page **16** of **23**

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

Pigmentary and ultrafine titanium dioxide were tested for carcinogenicity by oral administration in mice and rats, by inhalation in rats and female mice, by intratracheal administration in hamsters and female rats and mice, by subcutaneous injection in rats and by intraperitoneal administration in male mice and female rats.

In one inhalation study, the incidence of benign and malignant lung tumours was increased in female rats. In another inhalation study, the incidences of lung adenomas were increased in the high-dose groups of male and female rats. Cystic keratinizing lesions that were diagnosed as squamous-cell carcinomas but re-evaluated as non-neoplastic pulmonary keratinizing cysts were also observed in the high-dose groups of female rats. Two inhalation studies in rats and one in female mice were negative. Intratracheally instilled female rats showed an increased incidence of both benign and malignant lung tumours following treatment with two types of titanium dioxide. Tumour incidence was not increased in intratracheally instilled hamsters and female mice

In-vivo studies have shown enhanced micronucleus formation in bone marrow and peripheral blood lymphocytes of intraperitoneally instilled mice. Increased Hprt mutations were seen in lung epithelial cells isolated from titanium dioxide-instilled rats. In another study, no enhanced oxidative DNA damage was observed in lung tissues of rats that were intratracheally instilled with titanium dioxide. The results of most in-vitro genotoxicity studies with titanium dioxide were negative.

PARAFFIN WAX

Version No: 2.1

Tumorigenic in rats

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cycloparaffins.

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since:

- \cdot The adverse effects of these materials are associated with undesirable components, and
- \cdot The levels of the undesirable components are inversely related to the degree of processing;
- · Distillate base oils receiving the same degree or extent of processing will have similar toxicities;
- · The potential toxicity of residual base oils is independent of the degree of processing the oil receives.

The degree of refining influences the carcinogenic potential of the oils. Whereas mild acid / earth refining processes are inadequate to substantially reduce the carcinogenic potential of lubricant base oils, hydrotreatment and / or solvent extraction methods can yield oils with no carcinogenic potential.

· The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing.

Unrefined and mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size.

Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil s mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing

Skin irritating is not significant (CONCAWE) based on 14 tests on 10 CASs from the OLBO class (Other Lubricant Base Oils). Each study lasted for 24 hours, a period of time 6 times longer than the duration recommended by the OECD method). Eye irritation is not significant according to experimental data (CONCAWE studies) based on 9 "in vivo" tests on 7 CASs from the OLBO class(Other Lubricant Base Oils).

Sensitisation: The substance does not cause the sensitization of the respiratory tract or of the skin. (CONCAWE studies based on 14 tests on 11 CASs from the OLBO class(Other Lubricant Base Oils))

Germ cell mutagenicity: The tests performed within the 'in vivo" studies regarding gene mutation at mice micronuclei indicated negative results (CONCAWE studies. AMES tests had negative results in 7 studies performed on 4 CASs from the OLBO class(Other Lubricant Base Oils)).

Reproduction toxicity: Reproduction / development toxicity monitoring according to OECD 421 or 422 methods. CONCAWE tests gave negative results in oral gavage studies. Pre-birth studies regarding toxicity in the unborn foetus development process showed a maternal LOAEL (Lowest Observed Adverse Effect Level) of 125 mg/kg body/day, based on dermal irritation and a NOAEL (No Observable Adverse Effect Level) of 2000 mg/kg body/day, which shows that the substance is not toxic for reproduction.

STOT (toxicity on specific target organs) – repeated exposure: Studies with short term repeated doses (28-day test) on rabbit skin indicated the NOAEL value of 1000 mg/kg. NOAEL for inhalation, local effects > 280 mg/m3 and for systemic effects NOAEL > 980 mg/m3.

Sub-chronic toxicity

90-day study Dermal: NOAEL > 2000 mg/kg (CONCAWE studies).

Repeat dose toxicity:

Ora

NOAEL for heavy paraffinic distillate aromatic extract could not be identified and is less than 125 mg/kg/day when administered orally.

Inhalation

The NOAEL for lung changes associated with oil deposition in the lungs was 220 mg/m3. As no systemic toxicity was observed, the overall NOAEL for systemic effects was > 980 mg/m3.

Version No: 2.1

Page 17 of 23

Kent Essential Sketching and Drawings

Initial Date: **25/09/2025** Revision Date: **25/09/2025** Print Date: **01/10/2025**

Dermal

In a 90 day subchronic dermal study, the administration of Light paraffinic distillate solvent extract had an adverse effect on survivability, body weights, organ weights (particularly the liver and thymus), and variety of haematology and serum chemistry parameters in exposed animals. Histopathological changes which were treatment-related were most prominent in the adrenals, bone marrow, kidneys, liver, lymph nodes, skin, stomach, and thymus. Based on the results of this study, the NOAEL for the test material is less than 30 mg/kg/day.

Toxicity to reproduction:

Mineral oil (a white mineral oil) caused no reproductive or developmental toxicity with 1 mL/kg/day (i.e., 1000 mg/kg/day) in an OECD 421 guideline study, but did cause mild to moderate skin irritation. Therefore, the reproductive/developmental NOAEL for this study is =1000 mg/kg/day and no LOAEL was determined.

Developmental toxicity, teratogenicity:

Heavy paraffinic distillate furfural extract produced maternal, reproductive and foetal toxicity. Maternal toxicity was exhibited as vaginal discharge (dose-related), body weight decrease, reduction in thymus weight and increase in liver weight (125 mg/kg/day and higher) and aberrant haematology and serum chemistry (125 and/or 500 mg/kg/day). Evidence of potential reproductive effects was shown by an increased number of dams with resorptions and intrauterine death. Distillate aromatic extract (DAE) was developmentally toxic regardless of exposure duration as indicated by increased resorptions and decreased foetal body weights. Furthermore, when exposures were increased to 1000 mg/kg/day and given only during gestation days 10 through 12, cleft palate and ossification delays were observed. Cleft palate was considered to indicate a potential teratogenic effect of DAE. The following Oil Industry Note (OIN) has been applied: OIN 8 - The classifications as a reproductive toxicant category 2; H361d (Suspected of damaging the unborn child) and specific target organ toxicant category 1; H372 (Causes damage to organs through prolonged or repeated exposure) need not apply if the substance is not classified as carcinogenic

Toxicokinetics of lubricant base oils has been examined in rodents. Absorption of other lubricant base oils across the small intestine is related to carbon chain length; hydrocarbons with smaller chain length are more readily absorbed than hydrocarbons with a longer chain length. The majority of an oral dose of mineral hydrocarbon is not absorbed and is excreted unchanged in the faeces. Distribution of mineral hydrocarbons following absorption has been observed in liver, fat, kidney, brain and spleen. Excretion of absorbed mineral hydrocarbons occurs via the faeces and urine. Based on the pharmacokinetic parameters and disposition profiles, the data indicate inherent strain differences in the total systemic exposure (~4 fold greater systemic dose in F344 vs SD rats), rate of metabolism, and hepatic and lymph node retention of C26H52, which may be associated with the different strain sensitivities to the formation of liver granulomas and MLN histiocytosis.

Highly and Severely Refined Distillate Base Oils

Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or the method or extent of processing, the oral LD50s have been observed to be >5 g/kg (bw) and the dermal LD50s have ranged from >2 to >5g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to> 4 mg/l.

When tested for skin and eye irritation, the materials have been reported as "non-irritating" to "moderately irritating" Testing in guinea pigs for sensitization has been negative

Repeat dose toxicity: . Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil s toxicity is inversely related to the degree of processing it receives. Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/ or the peculiarities of the study.

- The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive,
- The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and
- ▶ The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials.

Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study's authors.

A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of the two base oil dose groups, three malformed foetuses were found among three litters The study authors considered these malformations to be minor and within the normal ranges for the strain of rat.

Genotoxicity:

In vitro (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay Base oils with no or low concentrations of 3-7 ring PACs had low mutagenicity indices.

In vivo (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test materials were administered via gavage at dose levels ranging from 500 to 5000 mg/kg (bw). Dosing occurred for either a single day or for five consecutive days. None of the base oils produced a significant increase in aberrant cells.

Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally.

TALLOW

Tallow derivatives used in the manufacture of cosmetic products such as fatty acids, glycerol, fatty acid esters and soap are regarded as safe if they are obtained by the following minimal processes which must be strictly certified:

- transesterification or hydrolysis at 200°C, under pressure for 20 minutes (glycerol and fatty acids and esters)
- saponification with NaOH 12M (glycerol and soap)
- * batch process: at 95°C for 3 hours
- * continuous process: at 140°C, 2 bars for 8 minutes or equivalent.

Moreover, other tallow derivatives (e.g. fatty alcohols, fatty amines, fatty amides) produced from the above mentioned and submitted to further processes are regarded as safe.

Opinion of The Scientific Committee on Cosmetic Products and Non-Food Products intended for Consumers concerning Tallow Derivatives revised and adapted opinion of 24.6.97 adopted by the plenary session of the SCCNFP of 23 September 1998 None of the constituents of tallow were toxic through oral and dermal exposure, they were not ocular or dermal irritants, and they were neither dermal sensitizers nor photosensitizers. The same was true for other oils which contain varying concentrations of the constituents of tallow.

Based on the CIR safety evaluations of the individual constituents of tallow and of cosmetic ingredients containing the constituents of tallow, and on the approval of tallow for use in foods and other consumer products, it is concluded that tallow.

Version No: 2.1

Page 18 of 23

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025

Print Date: 01/10/2025

CARBON BLACK

Cosmetic Ingredient Review Expert Panel Inhalation (rat) TCLo: 50 mg/m3/6h/90D-I Nil reported

ingredients in the present practices of use

Kent Essential Sketching and Drawings & GRAPHITE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a nonallergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

tallow glyceride, tallow glycerides, hydrogenated tallow glyceride, and hydrogenated tallow glycerides are safe as cosmetic

Kent Essential Sketching and Drawings & KAOLIN & GRAPHITE & TALLOW & CARBON BLACK

No significant acute toxicological data identified in literature search.

"Hydrocarbon wax" describes a group of solid C20 to C36 paraffinic hydrocarbons which are not absorbed in the gastro-intestinal tract and in small quantity will pass through undigested.

The widespread use in cosmetic and in cosmetic surgery over many years demonstrates the low toxicity of refined waxes and many guidelines exist for their safe use Notwithstanding this, there are occasional reports of adverse effects with these products. Subcutaneous deposits often referred to as paraffinoma, have been described frequently following injection of these materials under the skin but these are not normally associated with other progressive changes.

Paraffin wax and microcrystalline were each administered orally as a solution in arachis oil to groups of 5 male and 5 female rats at dose levels of 1000 and 5000 g/kg bw. produced no clinical signs of toxicity during the seven day observation period and growth rates were normal. There were no mortalities and no macroscopic changes were observed at autopsy.

Three samples of 50% paraffin in petrolatum were tested in repeated, open patch applications to 6 rabbits. Two samples produced erythema in four animals that lasted three days, and one produced erythema in one rabbit that lasted two days. A microcrystalline wax was slightly irritating, to rabbit skin, in a 24 hour occluded patch test.

Four 50% solutions of paraffin in petrolatum were each instilled into the eyes of six albino rabbits with no rinse. Eyes were observed for irritation for three days. Two of the samples caused mild irritation in one rabbit on day 1; the other samples were not

In a long-term feeding study with Sprague-Dawley rats, no wax-related effects were observed. In a series of 180-day feeding studies in rats that were performed over a period of approximately 15 years (beginning in 1955) on chewing-gum bases containing hydrocarbon wax in proportions varying from 2% to 57% of the gum base, no compound-related effects were observed

Kent Essential Sketching and Drawings & PARAFFIN

Long-term toxicity studies indicated that petroleum-derived paraffin and microcrystalline waxes are non-toxic and noncarcinogenic

Eight slack waxes and eight aromatic hydrocarbon extracts derived from the slack waxes were tested for carcinogenicity after applying these to the skin of mice. The slack waxes showed only a low order of carcinogenicity at 250 days. However by 450 days every sample of slack wax had elicited papillomas and for 5 of them cancers as well. The aromatic extracts on the other hand exhibited a greater potency. At 250 days all but one sample had produced papillomas and 5 samples had produced cancers. At 450 days all but one sample had elicited cancers and all had elicited papillomas. The authors concluded that the carcinogenicity of slack wax can be attributed to the aromatic compounds found in the oils from which the waxes were pressed and which are retained on the waxes as impurities, and is not due to paraffins.

Five petrolatum waxes were negative for local and systemic carcinogenicity or toxicity in skin-painting studies in mice and rabbits. However, wax disk implants, but not ground wax implants, were associated with the development of fibrosarcomas at the implantation site in rats.

A description of the accumulation of long-chain alkanes (C29, C31, and C33) in a patient who had died of heart disease led the author to conclude that these hydrocarbons were of dietary (plant) origin as judged by the tissue distribution of the alkanes The EU Scientific Committee for Food (SCF) reviewed the available information on mineral hydrocarbons, which included the petroleum waxes. Their opinion was published in 1995. The SCF reached the following conclusion:

There are sufficient data to allow a full Group ADI (Average daily Intake)of 0-20 mg/kg bw for waxes conforming to the following specification:

- Highly refined waxes derived from petroleum based or synthetic hydrocarbon feedstocks, with viscosity not less than 11 m3/s (cSt) at 100 deg C
- Carbon number not less than 25 at the 5% boiling point
- Average molecular weight not less than 500

for bentonite clavs:

Bentonite (CAS No. 1302-78-9) consists of a group of clays formed by crystallisation of vitreous volcanic ashes that were deposited in water.

The expected acute oral toxicity of bentonite in humans is very low (LD50>15 g/kg). However, severe anterior segment inflammation. uveitis and retrocorneal abscess from eye exposure were reported when bentonite had been used as a

Kent Essential Sketching and Drawings & KAOLIN

In a 33 day dietary (2 and 6%) and a 90 day dietary (1, 3 and 5%) studies in chickens, no changes in behaviour, overall state, clinical and biochemical parameters and electrolytic composition of the blood. Repeat dietary administration of bentonite did not affect calcium or phosphorus metabolism. However, larger amounts caused decreased growth, muscle weakness, and death with marked changes in both calcium and phosphorus metabolism.

Bentonite did not cause fibrosis after 1 year exposure of 60 mg dust (<5 um) in a rat study. However, in a second rat study, where 5 um particles were intratracheally instilled at 5, 15 and 45 mg/rat, dose-related fibrosis was observed. Bentonite clay dust is believed to be responsible for bronchial asthma in workers at a processing plant in USA.

Ingestion of bentonite without adequate liquids may result in intestinal obstruction in humans.

Hypokalaemia and microcytic iron-deficiency anaemia may occur in patients after repeat doses of clay. Chronic ingestion has been reported to cause myositis.

Page 19 of 23

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

Version No: 2.1

Kent Essential Sketching and Drawings & CARBON BLACK	WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.			
Acute Toxicity	×	Carcinogenicity	~	
Skin Irritation/Corrosion	×	Reproductivity	×	
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~	
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	~	
Mutagenicity	×	Aspiration Hazard	×	

Legend: X − Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

Kent Essential Sketching and Drawings	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
kaolin	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	>100mg/l	2
graphite	EC50	48h	Crustacea	>100mg/l	2
	NOEC(ECx)	96h	Fish	>=100mg/l	2
	LC50	96h	Fish	>100mg/l	2
paraffin wax	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Availabl
	Endpoint	Test Duration (hr)	Species	Value	Source
tallow	Not Available	Not Available	Not Available	Not Available	Not Availabl
	Endpoint	Test Duration (hr)	Species	Value	Sourc
	EC50	72h	Algae or other aquatic plants	>0.2mg/l	2
carbon black	EC50	48h	Crustacea	33.076- 41.968mg/l	4
	NOEC(ECx)	24h	Crustacea	3200mg/l	1
	LC50	96h	Fish	>100mg/l	2
Legend:	4. US EPA, Ec	-	CHA Registered Substances - Ecotoxicologic a 5. ECETOC Aquatic Hazard Assessment Da tration Data 8. Vendor Data	•	

for petroleum waxes:

Environmental fate:

Most hydrocarbon components of substances in this Group will have little or no tendency to partition to air. The half lives for degradation of these hydrocarbons by reaction with hydroxyl radicals, in the troposphere, under the influence of sunlight, will all be less than one day, by extrapolation from the data quoted by Atkinson. Accordingly, any hydrocarbon material which does partition to air will be rapidly photodegraded

As hydrocarbon number increases above C13, as is the case for the majority of the wax constituents, Log K values >6 are predicted. Substances having Log K estimates greater than 6 are characterised by extremely large molecular weight and subsequent hydrophobicity, therefore no significant aqueous exposures or bioaccumulation are expected to occur.

Since molecular weight and structural conformation determines in large part the solubility and vapour pressure characteristics of the hydrocarbons, modeling focused on the lower molecular weight hydrocarbons. These would be selected C13 and C20 hydrocarbons since waxes consist mostly of C20 to C85 compounds, with some minimal percent of C13 through C20 hydrocarbons. Therefore, the majority of the physicochemical modeling was performed on various paraffinic, naphthenic and aromatic representatives containing 13 and C20 carbon atoms.

log Kow ranged from 4.7 >6.7

Version No: 2.1

Page 20 of 23

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

Water solubility: The water solubility of waxes cannot be determined due to their complex mixture characteristics. The highest solubilities would be exhibited by only a small fraction of the hydrocarbon molecules present in waxes. Increasing carbon number results in rapidly decreasing solubility, so that the most-soluble (predominantly methyl-substituted diaromatic) C18 and C20 analogues yield model values of 0.01195 and 0.00125 mg/l, respectively. Higher molecular weight (higher carbon number) components are even less water soluble. Based on water solubility modeling for C13 components of complex mixtures, aqueous solubilities of these waxes are typically much less than 1 ppm, due to differential partitioning of components between the aqueous and organic phases.

Hydrolysis: Materials in the waxes category are not subject to hydrolysis, as they lack these reactive groups with which a water molecule or hydroxide ion reacts to form a new carbon-oxygen bond.

Photodegradation: Although waxes typically have low vapour pressures, volatilisation of some lower molecular weight components exhibit relatively high atmospheric oxidation half-lives. Therefore, those compounds that may partition to the atmosphere will be removed through indirect photochemical degradation. All modeled components exhibited rapid degradation in the atmosphere; the value presented represents both the most volatile component and the longest modeled half-life. All other modeled C13 components had both lower volatility and shorter half-lives.

Result: t1/2 = 0.913 days (10.96 hr) for most volatile C13 component modeled

Transport between Environmental Compartments: Fugacity-based computer modeling indicated that the majority of high molecular weight hydrocarbons with carbon numbers of C20 and greater in waxes would be distributed to soil. Percent distribution estimates were modeled with C13 to C29 branched paraffins as this class of wax hydrocarbons shows the greater distribution to air. Aromatic compounds with carbon numbers from C13 through C85 will partition principally to soil. Linear paraffins and naphthenes distribute to both soil and air, with increasing partitioning to soil for hydrocarbons greater than C20 as vapour pressure decreases. Since the majority of hydrocarbon components in waxes are primarily normal paraffins of C20. and greater, with moderate to minimal amounts of naphthenics, isoparaffins and trace amounts of aromatics, volatility is not a significant fate process for these petroleum substances due to negligible vapor pressures at ambient temperatures and their high molecular weight. As hydrocarbon number increases above C20, partitioning to soil is the predominant behavior of these compounds.

Biodegradation: Not readily biodegradable; inherently biodegradable and extensively biodegradable in long-term exposures. Waxed paper decomposes at about the same rate as unwaxed paper. Soil invertebrates contribute significantly to the decomposition of waxed paper in leaf litter. Decomposition of waxed paper occurs more rapidly during the autumn/winter, when there is a fresh layer of leaf litter on the ground, than during the spring/summer, when the last autumns leaf litter has been largely reduced to humus

Degradation (28 days): 21% OECD 301B

Ecotoxicity:

Fish LC50 (96 h): Oncorhyncus mykiss >6000 mg/l (hydrotreated heavy paraffinic distillate); >1000 mg/l (solvent refined heavy paraffinic distillate); >10000 mg/l (white mineral oil)

Daphnia magna EC50: (48 h): >10000 mg/l (solvent refined heavy paraffinic distillate) (immobilisation)

Algae EC50 (96 h): Scenedesmus subspicatus >1000 mg/l (solvent refined residual oil) (growth rate, biomass)

It has been confirmed experimentally that for fish and invertebrates, paraffinic hydrocarbons with a carbon number of 10 or higher (log Kow >5) show no acute toxicity and that alkylbenzenes with a carbon number of 14 or greater (log Kow >5) similarly show no acute toxicity From these well-demonstrated solubility 'cut-offs' for acute toxicity of hydrocarbon substances, which directly relate to their physico-chemical properties, it is clear that the same should hold for complex petroleum substances.

Paraffinic hydrocarbons with carbon numbers of greater than 14 (log Kow >7.3) should show no measurable chronic toxicity. The existence of this cut-off for chronic toxicity is supported for petroleum substances by the numerous chronic toxicity studies reported on lubricant base oils, which demonstrate that for these substances which are composed primarily of alkanes and naphthenes of C15 and greater, no evidence of chronic toxicity is seen.

Bentonite and kaolin have low toxicity to aquatic species, a large number of which have been tested

Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.).

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
paraffin wax	LOW (LogKOW = 10.16)

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

SECTION 14 Transport information

Labels Required

Version No: 2.1

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
kaolin	Not Available
graphite	Not Available
paraffin wax	Not Available
tallow	Not Available
carbon black	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
kaolin	Not Available
graphite	Not Available
paraffin wax	Not Available
tallow	Not Available
carbon black	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

kaolin is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

graphite is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

paraffin wax is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

tallow is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

carbon black is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

Additional Regulatory Information

Not Applicable

Part Number: Version No: **2.1**

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (kaolin; graphite; paraffin wax; tallow; carbon black)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (kaolin; graphite; tallow)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	All chemical substances in this product have been designated as TSCA Inventory 'Active'
Taiwan - TCSI	Yes
Mexico - INSQ	No (tallow)
Vietnam - NCI	Yes
Russia - FBEPH	No (tallow)
UAE - Control List (Banned/Restricted Substances)	No (kaolin; paraffin wax; tallow; carbon black)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	25/09/2025
Initial Date	25/09/2025

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ► IARC: International Agency for Research on Cancer
- ▶ ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ▶ ES: Exposure Standard
- OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ► LOAEL: Lowest Observed Adverse Effect Level
- ► TLV: Threshold Limit Value
- ▶ LOD: Limit Of Detection
- ▶ OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- ▶ DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- MARPOL: International Convention for the Prevention of Pollution from Ships
- ▶ IMSBC: International Maritime Solid Bulk Cargoes Code
- ▶ IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List

Chemwatch: **7980-67** Page **23** of **23**

Part Number: Version No: **2.1**

Kent Essential Sketching and Drawings

Initial Date: 25/09/2025 Revision Date: 25/09/2025 Print Date: 01/10/2025

- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- ▶ NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- ▶ NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ► TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.