

Jasco Pty Limited

Chemwatch: 5462-73

Version No: 2.1.3.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Issue Date: **04/05/2021** Print Date: **05/05/2021** L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	LEFRANC & BOURGEOIS VITRAIL COLOURS
Chemical Name	Not Applicable
Synonyms	Not Available
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Consumer uses. Artists and hobby paints.
	SDS are intended for use in the workplace. For domestic-use products, refer to consumer labels.

Details of the supplier of the safety data sheet

Registered company name	Jasco Pty Limited
Address	1-5 Commercial Road Kingsgrove NSW 2208 Australia
Telephone	+61 2 9807 1555
Fax	Not Available
Website	www.jasco.com.au
Email	sales@jasco.com.au

Emergency telephone number

Association / Organisation	Australian Poisons Centre
Emergency telephone numbers	13 11 26 (24/7)
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S5
Classification ^[1]	Flammable Liquid Category 3, Aspiration Hazard Category 1, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Germ cell mutagenicity Category 1A, Carcinogenicity Category 1A, Reproductive Toxicity Category 2, Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Hazard statement(s)

H226	Flammable liquid and vapour.
H304	May be fatal if swallowed and enters airways.
H319	Causes serious eye irritation.
H336	May cause drowsiness or dizziness.
H340	May cause genetic defects.
H350	May cause cancer.
H361d	Suspected of damaging the unborn child.
H373	May cause damage to organs through prolonged or repeated exposure.
H412	Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P260	Do not breathe mist/vapours/spray.
P271	Use only a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection/hearing protection.
P240	Ground and bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use non-sparking tools.
P243	Take action to prevent static discharges.
P273	Avoid release to the environment.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.		
P308+P313	IF exposed or concerned: Get medical advice/ attention.		
P331	Do NOT induce vomiting.		
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.		
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.		
P337+P313	If eye irritation persists: Get medical advice/attention.		
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].		
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.		

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1174522-20-3	30-50	hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics
64742-88-7	10-30	solvent naphtha petroleum, medium aliphatic.
108-94-1	3-5	cyclohexanone
64742-95-6.	1-3	C9-aromatic hydrocarbon solvent
67-64-1	1-3	acetone
623-40-5	1-3	methyl propyl ketoxime
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -		

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. 			
Skin Contact	 If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. 			
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. 			
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. 			

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment. Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur.Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
Advice for firefighters	

	Alert Fire Brigade and tell them location and nature of hazard.
	May be violently or explosively reactive.
	Wear breathing apparatus plus protective gloves.
	Prevent, by any means available, spillage from entering drains or water course.
Fire Fighting	If safe, switch off electrical equipment until vapour fire hazard removed.
File Fighting	Use water delivered as a fine spray to control fire and cool adjacent area.
	Avoid spraying water onto liquid pools.
	DO NOT approach containers suspected to be hot.
	Cool fire exposed containers with water spray from a protected location.
	If safe to do so, remove containers from path of fire.
	Liquid and vapour are flammable.
	Moderate fire hazard when exposed to heat or flame.
	Vapour forms an explosive mixture with air.
	Moderate explosion hazard when exposed to heat or flame.
	Vapour may travel a considerable distance to source of ignition.
Fire/Explanian Harard	Heating may cause expansion or decomposition leading to violent rupture of containers.
File/Explosion Hazard	 On combustion, may emit toxic fumes of carbon monoxide (CO).
	Combustion products include:
	carbon dioxide (CO2)
	nitrogen oxides (NOx)
	other pyrolysis products typical of burning organic material.
	May emit clouds of acrid smoke
HAZCHEM	•3Y

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Environmental hazard - contain spillage. Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	 Environmental hazard - contain spillage. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so.

Water spray or fog may be used to disperse /absorb vapour.
Contain spill with sand, earth or vermiculite.
Use only spark-free shovels and explosion proof equipment.
Collect recoverable product into labelled containers for recycling.
Absorb remaining product with sand, earth or vermiculite.
Collect solid residues and seal in labelled drums for disposal.
Wash area and prevent runoff into drains.
If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling	The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m, Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. Even with proper grounding and bonding, this material can still accumulate an electrostatic charge. If sufficient charge is allowed to accumulate, electrostatic discharge and ignition of flammable air-vapour mixtures can occur. Containers, even those that have been emptied, may contain explosive vapours. Do NOT cut, drill, grind, weld or perform similar operations on or near containers. Do NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of overexposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. Do NOT enter confined spaces until atmosphere has been checked. Avoid generation of static electricity. Do NOT use plastic buckets. Earth all lines and equipment. Use spark-free tools when handling. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Avid physical damage t
Other information	 Store in original containers in approved flammable liquid storage area. Store away from incompatible materials in a cool, dry, well-ventilated area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers - dry chemical, foam or carbon dioxide) and flammable gas detectors. Keep adsorbents for leaks and spills readily available. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): Store in grounded, properly designed and approved vessels and away from incompatible materials. For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. Storage tanks should be above ground and diked to hold entire contents.

Conditions for safe storage, including any incompatibilities

Suitable container
Packing as supplied by manufacturer.
Plastic containers may only be used if approved for flammable liquid.
Check that containers are clearly labelled and free from leaks.
For low viscosity materials (i) : Drums and jerry cans must be of the non-removable head type. (ii) : Where a can is to be used as an inner package, the can must have a screwed enclosure.
For materials with a viscosity of at least 2680 cSt. (23 deg. C)

	 For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
Storage incompatibility	Lew molecular weight alkanes: • May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate. • May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat. • Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens • may generate electrostatic charges, due to low conductivity, on flow or agitation. • Avoid flame and ignition sources Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected tin to ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploside when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C. Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen. For alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is istabilised by resonance structure of the ring. • Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	solvent naphtha petroleum, medium aliphatic.	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	cyclohexanone	Cyclohexanone	25 ppm / 100 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	acetone	Acetone	500 ppm / 1185 mg/m3	2375 mg/m3 / 1000 ppm	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics	350 mg/m3	1,800 mg/m3	40,000 mg/m3
solvent naphtha petroleum, medium aliphatic.	1,200 mg/m3	6,700 mg/m3	40,000 mg/m3

Ingredient	TEEL-1	TEEL-2		TEEL-3
cyclohexanone	60 ppm	830 ppm		5000* ppm
C9-aromatic hydrocarbon solvent	1,200 mg/m3	6,700 mg/m3		40,000 mg/m3
acetone	Not Available	Not Available		Not Available
Ingredient	Original IDLH		Revised IDLH	
hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics	2,500 mg/m3		Not Available	
solvent naphtha petroleum, medium aliphatic.	2,500 mg/m3		Not Available	
cyclohexanone	700 ppm		Not Available	
C9-aromatic hydrocarbon solvent	Not Available		Not Available	
acetone	2,500 ppm		Not Available	
methyl propyl ketoxime	Not Available		Not Available	

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
C9-aromatic hydrocarbon solvent	E	≤ 0.1 ppm
methyl propyl ketoxime	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemical potency and the adverse health outcomes associated with exposu- band (OEB), which corresponds to a range of exposure concentre	als into specific categories or bands based on a chemical's ire. The output of this process is an occupational exposure tions that are expected to protect worker health

MATERIAL DATA

For cyclohexanone

Odour Threshold Value: 0.12 ppm (detection and recognition)

Exposure at the TLV-TWA produces minimal irritation and this limit is significantly lower than the concentration reported to just induce demonstrable changes in the liver and kidneys of rabbits repeatedly exposed to the substance (190 ppm).

Odour Safety Factor (OSF)

OSF=28 (CYCLOHEXANONE)

Odour Threshold Value: 3.6 ppm (detection), 699 ppm (recognition)

Saturation vapour concentration: 237000 ppm @ 20 C

NOTE: Detector tubes measuring in excess of 40 ppm, are available.

Exposure at or below the recommended TLV-TWA is thought to protect the worker against mild irritation associated with brief exposures and the bioaccumulation, chronic irritation of the respiratory tract and headaches associated with long-term acetone exposures. The NIOSH REL-TWA is substantially lower and has taken into account slight irritation experienced by volunteer subjects at 300 ppm. Mild irritation to acclimatised workers begins at about 750 ppm - unacclimatised subjects will experience irritation at about 350-500 ppm but acclimatisation can occur rapidly. Disagreement between the peak bodies is based largely on the view by ACGIH that widespread use of acetone, without evidence of significant adverse health effects at higher concentrations, allows acceptance of a higher limit. Half-life of acetone in blood is 3 hours which means that no adjustment for shift-length has to be made with reference to the standard 8 hour/day, 40 hours per week because body clearance occurs within any shift with low potential for accumulation.

A STEL has been established to prevent excursions of acetone vapours that could cause depression of the central nervous system.

Odour Safety Factor(OSF)

OSF=38 (ACETONE)

For trimethyl benzene as mixed isomers (of unstated proportions)

Odour Threshold Value: 2.4 ppm (detection)

Use care in interpreting effects as a single isomer or other isomer mix. Trimethylbenzene is an eye, nose and respiratory irritant. High concentrations cause central nervous system depression. Exposed workers show CNS changes, asthmatic bronchitis and blood dyscrasias at 60 ppm. The TLV-TWA is thought to be protective against the significant risk of CNS excitation, asthmatic bronchitis and blood dyscrasias associated with exposures above the limit. Odour Safety Factor (OSF)

OSF=10 (1,2,4-TRIMETHYLBENZENE)

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Issue Date: 04/05/2021 Print Date: 05/05/2021

LEFRANC & BOURGEOIS VITRAIL COLOURS

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- B 26-550As "A" for 50-90% of persons being distracted
- C 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Appropriate engineering controls	 Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area. Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system. Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within. Open-vessel systems are prohibited. Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system. For maintenance and decontamination
Personal protection	
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
Skin protection	See Hand protection below
Hands/feet protection	 Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material

	can not be calculated in advance and has therefore to be checked prior to the application
	 can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: Excellent when breakthrough time > 20 min Fair when breakthrough time < 20 min For openeral applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should als
	• Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential
	Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Overalls. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. Some plastic personal protective, equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-stati

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 &

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the

computer-generated selection:

LEFRANC & BOURGEOIS VITRAIL COLOURS

Material	СРІ
BUTYL	A
PE/EVAL/PE	A
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NITRILE	С
NITRILE+PVC	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON/NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Caoloured flammable liquid with a characteristic odour.

SECTION 9 Physical and chemical properties

Appearance

Information on basic physical and chemical properties

149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Physical state	Liquid	Relative density (Water= 1)	0.87-0.95
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	>152.1
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	30-40	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available

Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation hazard is increased at higher temperatures. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
	health of the individual.
Ingestion	fatal or may produce serious damage to the health of the individual. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).
	Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.
Eye	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a

substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyperresponsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers

Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyperresponsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer.

There is sufficient evidence to provide a strong presumption that human exposure to the material may produce heritable genetic damage.

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in the development of heritable genetic damage, generally on the basis of

- appropriate animal studies,

- other relevant information

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, generally on the basis that results in appropriate animal studies provide strong suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects.

Implantation studies in rats show that paraffin oils may be tumourigen. As a general rule the highly refined paraffins contain a lower level of suspect polyaromatic hydrocarbons than less refined grades and also less than waxes derived from naphthenic base-stocks.

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human.

Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

EFRANC & BOURGEOIS	ΤΟΧΙΟΙΤΥ	IRRITATION
VITRAIL COLOURS	Not Available	Not Available
	ΤΟΧΙΟΙΤΥ	IRRITATION
hydrocarbons, C9-11,	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
cyclics, <2% aromatics	Inhalation(Rat) LC50; >5.266 mg/L4h ^[1]	Skin: adverse effect observed (irritating) ^[1]
-	Oral(Rat) LD50; >5000 mg/kg ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION
solvent naphtha	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
aliphatic.	Inhalation(Rat) LC50; >4.3 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
_	Oral(Rat) LD50; >5000 mg/kg ^[2]	
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: >794<3160 mg/kg ^[1]	Eye (human): 75 ppm
cyclohexanone	Inhalation(Rat) LC50; >6.2 mg/l4h ^[2]	Eye (rabbit): 0.25 mg/24h SEVERE
	Oral(Rat) LD50; ~1.62 mg/kg ^[2]	Eye (rabbit): 4.74 mg SEVERE
		Skin (rabbit): 500 mg(open) mild
	ΤΟΧΙΟΙΤΥ	IRRITATION
9-aromatic hydrocarbon	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
solvent	Inhalation(Rat) LC50; >4.42 mg/L4h ^[1]	Skin: adverse effect observed (irritating) ^[1]
	Oral(Rat) LD50; >4500 mg/kg ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: 20 mg/kg ^[2]	Eye (human): 500 ppm - irritant
	Inhalation(Mouse) LC50; 44 mg/L4h ^[2]	Eye (rabbit): 20mg/24hr -moderate
	Oral(Rat) LD50; 1738 mg/kg ^[1]	Eye (rabbit): 3.95 mg - SEVERE
acetone		Eye: adverse effect observed (irritating) ^[1]
		Skin (rabbit): 500 mg/24hr - mild
		Skin (rabbit):395mg (open) - mild
		Skin: no adverse effect observed (not irritating) $\left[1 \right]$
	TOXICITY	IRRITATION
mothyl propyl katavira	Inhalation(Rat) LC50; >295 ppm4h ^[1]	Eye (rabbit): irritating *
петнуї ргоруї кетохіте	Oral(Rat) LD50; 1133 mg/kg ^[1]	Skin (rabbit): Not irritating *
		Skin: no adverse effect observed (not irritating) ^[1]

For alkanes: Exposure to the commercial hexane (a representative of the ECHA group of hydrocarbons, C5-C7, n-alkanes, isoalkanes, n-hexane rich) had no effect on the behavior of rats. Rats were tested monthly throughout the exposure for hindlimb splay and grip strength. The NOAEC for sub-chronic neurological effects is 9000 ppm in rats. In a 13 week subchronic inhalation study, the neurotoxicity of light alkylate naphtha distillate (LAND-2; carbon range C5-C8) was examined in male and female rats and aside from acute CNS effects, no treatment related neurotoxic effects found in any of the treatment groups. The NOAEC was determined to be > 24.3 g/m3 (6646 ppm). Additionally, no neurological effects were reported HYDROCARBONS, C9-11, in the NTP 2 year carcinogenicity study on Stoddard solvent. N-ALKANES, For hydrocarbons, C5-C7, n-alkanes, isoalkanes, n-hexane rich ISOALKANES, CYCLICS, n-Hexane was metabolized and excreted within 168 h of iv bolus administration, inhalation exposure or dermal application. <2% AROMATICS Exhaled breath and urine were the two primary routes for the excretion and its metabolites. n-Hexane was widely distributed to the body tissues but were not concentrated significantly by any of those tissues. It was extensively metabolized and a number of radio labeled metabolites were excreted in the urine. n-Hexane and its radio labeled metabolites disappeared from the blood of rats with a half-life of approximately 9-10 h. Repeated inhalation exposure had no apparent effect on the rates or routes of excretion of either of the test compounds or their metabolites. The absorption rates into the skin, normalised for exposure concentration, was determined to be 0.013 cm/h The maximum

absorption rate into the blood was determined to be 0.005 nmol/h. A comparison of the estimated whole-body skin uptake with the inhalatory uptake from the same atmosphere, revealed that the dermal uptake contributed 0.1% to the total uptake C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are absorbed, they are typically metabolized by side chain oxidation to alcohol and carboxylic acid derivatives. These metabolites can be glucuronidated and excreted in the urine or further metabolized before being excreted. The majority of the metabolites are excreted in the urine and to a lower extent, in the faeces. Excretion is rapid with the majority of the elimination occurring within the first 24 hours of exposure. As a result of the lack of systemic toxicity and the ability of the parent material to undergo metabolism and rapid excretion, bioaccumulation of the test substance in the tissues is not likely to occur.

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are poorly absorbed dermally with an estimated overall percutaneous absorption rate of approximately 2ug/cm2/hr or 1% of the total applied fluid. Regardless of exposure route, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are rapidly metabolized and eliminated has been fully evaluated. All of the animal studies were performed in a manner similar or equivalent to currently established OECD guidelines. Based on these data, C9-C14 aliphatic, <2% aromatic hydrocarbons have a low order of acute toxicity by the oral, dermal, and inhalation routes of exposure. In a study examining the oral toxicity of commercial hexane. 6 male rats were given doses of up to 25 ml/kg of test substance by oral gavage. The animals were then observed for 14 days for mortality. No mortality was observed at any of the doses. The oral LD50 is therefore > 25 ml/kg (16.75 g/kg; density of 0.67).

C9-C14 aliphatic, <2% aromatic hydrocarbons is minimally toxic via ingestion where the LD50 is >5000 mg/kg, via dermal exposure where the LD50 is >5000 mg/kg, and by inhalation where the LC50 > 5000 mg/m3. These findings do not warrant classification of C9-C14 aliphatic, <2% aromatic hydrocarbons under the Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP) do not warrant classification under the Directive 67/548/EEC for dangerous substances and Directive 1999/45/EC for preparations (DSD/DPD). C9-C14 aliphatic, <2% aromatic hydrocarbons are classified under EU CLP guidelines as a Category 1 aspiration hazard based on its physical and chemical properties (hydrocarbon fluid, viscosity = 20.5 mm2/s) and as an R65 aspiration hazard under the EU DSD/DPD.

One study examined that acute inhalation toxicity of hexane to male rats. Groups of 10 male rats exposed to various large concentrations of hexane vapour for 4 hrs. Animals were then observed for clinical signs and mortality for at least the next 6 days. Several animals died during the exposure period. The LC50 was determined to be 73,680 ppm (259354 mg/m3). Due to the high concentration of the LC50, the test substance would not be classified as toxic by inhalation according to OECD GHS guidelines. Surviving animals experienced severe toxicological effects during the exposure.

Skin irritation:

For isoparaffinic, normal paraffinic, and mixed C9-C14 aliphatic, <2% aromatic hydrocarbon fluids, the weight of evidence indicates that the erythema and oedema scores (24, 48, and 72 average) are below the classification threshold requirements: 2.0, Directive 67/548/EEC for dangerous substances and Directive 1999/45/EC for preparation; 2.3, the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP).

For cycloparaffinic C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids, erythema and oedema scores (24, 48, and 72 average) are above the classification threshold requirements: 2.0, Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC for preparation; 2.3, the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP). This finding warrants classification of the test material as a skin irritant (R38) under Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC for preparations. This finding warrants classification of the test material as a Category 2 dermal irritant under the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP).

Eye irritation

Ocular lesion scores (24, 48, and 72 average) are below the classification threshold requirements.

Drective 67/548/EEC for dangerous substances and Directive 1999/45/EC for preparation: 0, cornea opacity; 0, iris lesion; >2.5, redness of the conjunctivae; >2.0, oedema of the conjunctivae (chemosis). Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP): 0, cornea opacity; 0, iris lesion; >2.0, redness of the conjunctivae; >2.0, oedema of the conjunctivae (chemosis).

Respiratory irritation

There are no studies that warrant classification as a respiratory irritant under either the Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC or under the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP).

Sensitisation:

A study was performed to determine the concentration of hexane that would be expected to cause sensitization in humans. Results of previous LLNA experiments were used to calculate the EC3 value, the concentration at which the test substance would produce a 3 -fold increase in the proliferative activity of lymph nodes in the LLNA test. The 3 -fold increase is considered a positive response for sensitization in the LLNA test. The EC3 value for hexane was determined to be > 100% concentration. The test substance is therefore not sensitizing.

There are no reports of respiratory sensitization from C9-C14 aliphatic, <2% aromatic hydrocarbons fluids in laboratory animals or humans. However, skin sensitization studies utilizing C9-C14 aliphatic, <2% aromatic hydrocarbons fluids found no indication of skin sensitization in guinea pigs. Additional studies in humans also found no indication of skin sensitization. With these observations, it is presumed that C9-C14 aliphatic, <2% aromatic hydrocarbons fluids will not be a respiratory sensitizing agent. Repeat dose toxicity,

In a study involving n-hexane, neurological effects were only seen at the highest dose level after an average of 101.3 days of exposure. The LOAEL for neurological effects is 46.2 mmol/kg bw (37973 mg/kg), and the NOAEL is 13.2 mmol/kg bw (1135 mg/kg). Reduced body weight gain was seen at all three dose levels, however was only considered treatment related in the 13.2 and 46.2 mmol/kg bw groups. The NOAEL is therefore 6.60 mmol/kg bw.

In a study involving n-hexane The NOAEC for male rats exposed via inhalation was 2984 ppm based on liver and kidney effects. The LOAEC for male rats was 8992 ppm. The NOAEC for female rats was 8992 ppm

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are expected to have a low order of repeated dose toxicity by the oral route of exposure. All tests were performed in a manner similar or equivalent to currently established OECD guidelines. In a repeated dose study where C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were administered via oral gavage, no signs of toxicity were observed at the maximum experimental dose tested, 5000 mg/kg/day.

In a repeated dose study where C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were administered via inhalation, no signs of

toxicity were observed at 10400 mg/m3. Based on these observations, the repeat inhalation concentration NOAEL is =10400 mg/m3 (10.4 mg/L) for C9-C14 aliphatic, <2% aromatic hydrocarbon fluid

Genetic toxicity:

A study examined the in vitro mutagenicity of vapours of the test substance commercial hexane. Plates of S. typhimurium were exposed for 7 -8 hrs to test atmospheres of 0, 600, 1000, 3000, 6000, or 9000 ppm of test substance. The test substance did not produce a positive response in any of the test strains. The test substance is not mutagenic.

In a study to determine the in vivo effect of inhalation exposure of commercial hexane on rat bone marrow. Groups of 5 male and 5 female rats were exposed to 0, 900, 3000, and 9000 ppm of test substance vapour for 6 hrs/day for 5 days. There was no statistically significant increase in cell aberrations in any treatment group. The test substance is not mutagenic.

C9-C14 aliphatic, <2% aromatic hydrocarbons fluids are not mutagenic using in vitro or in vivo genotoxicity assays. In bacterial tests, C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were not mutagenic in Salmonella strains tested in the presence or absence of metabolic activation. C9 -C14 aliphatic, <2% aromatic hydrocarbon fluids were negative in a in vitro mammalian cell gene mutation assay. In sister chromatid exchange and in chromosomal aberration studies, C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were negative in a in vitro mammalian cell gene mutation assay. In sister chromatid exchange and in chromosomal aberration studies, C9-C14 aliphatic, <2% aromatic hydrocarbons fluids did not produce an effect. C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were also non-mutagenic when tested in an in vivo mouse bone marrow micronucleus assay and when tested in dominant lethal studies utilizing an inhalation route of exposure. All studies were conducted in a manner similar or equivalent to currently established OECD guidelines. C9-C14 aliphatic, <2% aromatic hydrocarbons fluids are a non-genotoxic agent and classification is not warranted under the Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP) or under the Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC for preparations.

In a study examining the effects of commercial hexane the NOAEC for both male and female rats (adults and offspring) was 3000 ppm (10560 mg/m3). The LOAEC for these groups was 9000 ppm based on reduced body weight. There were no adverse effects to reproduction, therefore the NOAEC for reproduction is 9000 ppm (31680 mg/m3).

A study to examine the developmental toxicity of commercial hexane in mice, found the maternal NOAEC was 900 ppm, and the maternal LOAEC was 3000 ppm (10560 mg/m3) based on colour changes in the lungs. The developmental NOAEC was 3000 ppm and the LOAEC was 9000 ppm(31680 mg/m3) in mice.

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are not developmental toxicants. In two developmental studies (OECD TG 414), pregnant dams were dosed by inhalation with 0, 300, or 900 ppm C9-C14 aliphatic, <2% aromatic hydrocarbon fluids during gestational days 6 through 15. No adverse maternal or fetal effects were noted at any dose level. Thus, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids did not produce any maternal or fetal toxicity or any developmental effects in rats. Based on the study results, the maternal and developmental toxicity NOAEC is >= 900 ppm (5220 mg/m3). Based on this study and the lack of systemic toxicity, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids, are not expected to be developmental toxicants. No significant acute toxicological data identified in literature search.

For high molecular weight aliphatic hydrocarbons:

Acute toxicity:

Four studies were available for acute oral toxicity, dealing with the toxicity of C5-C20 normal paraffins, C14-C17 n-alkanes, C14-C16 paraffins and isohexadecane. All studies were conducted similarly to OECD guideline 401 without GLP compliance. All studies show no mortality at concentrations up to 5000 mg/kg bw.

Three studies were available for acute dermal toxicity, dealing with the toxicity of C5-C20 normal paraffins, C14-C17 n-alkanes and C14-C16 paraffins. All studies were conducted similarly to OECD guideline 402 without GLP compliance. All studies show no mortality at concentrations equal to or higher than 2000 mg/kg bw.

A reliable study and a non-reliable study were available for acute inhalation, dealing with the toxicity of hydrocarbons, C10-C12, isoalkanes, < 2% aromatics and C14-C16 n-paraffins, respectively. All studies were conducted similarly to OECD guideline 403. They all show no mortality at concentrations equal to or higher than 5000 mg/m3.

Sensitisation:

C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids were determined not to be skin sensitizers using Magnusson and Kligman Guinea-Pig Maximization tests (OECD TG 406). C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were determined not to be skin sensitizers in Human Repeated Insult Patch Tests (HRIPT)

C10-12 isoalkanes (<2% aromatics), C11-C14 n-alkanes (<2% aromatics) and C10-C13 (<2% aromatics) were not dermal sensitizers using a Magnusson and Kligman Guinea-Pig Maximization test (OECD TG 406).

However, skin sensitization studies utilizing C9-14 aliphatics (<2 % aromatics) found no indication of skin sensitization in guinea pigs. Additional studies on C14-C20 aliphatics (<2% aromatics) in humans also found no indication of skin sensitization. There are no reports of respiratory sensitization from C14-20 aliphatics (<2 % aromatics) in laboratory animals or humans. **Repeat dose toxicity:**

Oral: C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids are expected to have a low order of repeated dose toxicity by the oral route of exposure. All tests were performed in a manner similar or equivalent to currently established OECD guidelines. In a repeated dose study where C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered via oral gavage, no signs of toxicity were observed at the maximum experimental dose tested, 5000 mg/kg/day.

Inhalation: In a repeated dose study where C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered via inhalation, no signs of toxicity were observed at 10400 mg/m3. Based on these observations, the repeat inhalation concentration NOAEL is >=10400 mg/m3 (10.4 mg/L) for C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids.

Two read-across studies from the structurally analogous test materials "hydrocarbons C12-C16, n-alkanes, isoalkanes, cyclics, <2% aromatics" and "hydrocarbons, C10 -C13, n-alkanes, isoalkanes, cyclics, < 2% aromatics" were analysed. All tests were performed in a manner similar or equivalent to currently established OECD guidelines. The systemic NOAEL were determined to be higher than 1000 and 5000 mg/kg/day, respectively.

Inhalation: a repeated inhalation toxicity study was performed with "Hydrocarbons, C10 – C12, isoalkanes, < 2% aromatics" similarly to OECD guideline 413. Albino rats were exposed for 6 hours/day, 5 days/week for 13 weeks at nominal vapour concentrations of 10400 mg/m3, 5200 mg/m3, and 2600 mg/m3 to assess inhalation toxicity. As there were no pathologic changes, changes in organ weights were judged to have been compensatory rather than toxic effects. Based on these results, the No Observed Adverse Effect Concentration (NOAEC) was greater than or equal to 10400 mg/m3.

Oral: C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids are expected to have a low order of repeated dose toxicity by the oral route of exposure. All tests were performed in a manner similar or equivalent to currently established OECD guidelines. In a

repeated dose study where C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered via oral gavage, no signs of toxicity were observed at the maximum experimental dose tested, 5000 mg/kg/day.

Inhalation: In a repeated dose study where C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered via inhalation, no signs of toxicity were observed at 10400 mg/m3. Based on these observations, the repeat inhalation concentration NOAEL is >=10400 mg/m3 (10.4 mg/L) for C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids.

Genetic toxicity:

C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids are not mutagenic using in vitro or in vivo genotoxicity assays. In bacterial tests, C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids were not mutagenic in Salmonella strains tested in the presence or absence of metabolic activation. C9 -C14 aliphatic, <2% aromatic hydrocarbon fluids were negative in a in vitro mammalian cell gene mutation assay. In sister chromatid exchange and in chromosomal aberration studies, C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids were also non-mutagenic when tested in an in vivo mouse bone marrow micronucleus assay and when tested in dominant lethal studies utilizing an inhalation route of exposure. All studies were conducted in a manner similar or equivalent to currently established OECD guidelines. C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids are a non-genotoxic agent and classification is not warranted under the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP) or under the Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC for preparations.

All Ames tests on "hydrocarbons, C14-C20, n-alkanes, isoalkanes, cyclics,<2% aromatics" showed no mutagenic effect with and without metabolic activation. The chromosome aberration study in CHO cells on "hydrocarbons, C12-C16, n-alkanes, isoalkanes, cyclics,<2% aromatics" also showed no signs of mutagenicity. A mouse lymphoma forward mutation assay performed with hydrodesulfurised kerosene also showed no mutagenic properties.

The weight of evidence is derived from study records reported for the C9-C14 aliphatic, <2% aromatics. C9-C14 aliphatic, <2% aromatics are not genotoxic and are not classifiable as mutagens based upon the results of reliable in vitro and in vivo studies. In bacterial reverse mutation studies, the C9-C14 aliphatic, <2% aromatics were not mutagenic in the presence or absence of metabolic activation (IUCLID section 7.6.1). In mammalian cells in vitro, and in rats in vivo there were no mutagenic, clastenogenic or aneugenic effects reported in read-across from studies on C9-C14 aliphatic, <2% aromatics: a negative chromosome aberration (Human Peripheral Lymphocyte Chromosomal Aberration Test, Chinese Hamster Ovary Sister Chromatid Exchange Assay); and an in vivo inhalation exposure bone marrow chromosomal aberration study and micronucleus test (IUCLID sections 7.6.1 and 7.6.2).

Endpoint Conclusion: No adverse effect observed (negative)

Toxicity to reproduction:

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were examined for reproductive toxicity in a 28 day combined repeated dose toxicity study with the reproduction / developmental toxicity screening test (OECD TG 422). C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were administered oral gavage at a dose of 0, 25, 150, or 1000 mg/kg/day to groups of Sprague-Dawley rats. It was concluded that C9-C14 aliphatic, <2% aromatic hydrocarbon fluids did not induce reproductive toxicity in the parental animals and no effects on the endocrine system were observed. Therefore, the NOAEL was determined to be >=1000 mg/kg bw/day.

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were examined in a reproduction / developmental toxicity screening test (OECD TG 421). C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were administered by oral gavage at a dose of 0 (vehicle), 100, 300, 1000 mg/kg/day to groups of Sprague-Dawley rats. It was concluded that C9-C14 aliphatic, <2% aromatic hydrocarbon fluids did not induce reproductive toxicity in the parental animals and no effects on the endocrine system were observed. Therefore, the NOAEL was determined to be >=1000 mg/kg bw/day.

Based on this study and the lack of systemic toxicity, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids, are not expected to be reproductive toxicants.

In bacterial reverse mutation studies, the C14-C20 aliphatic, <2% aromatics were not mutagenic in the presence or absence of metabolic activation (IUCLID section 7.6.1). In mammalian cells in vitro, and in rats in vivo there were no mutagenic, clastogenic or aneugenic effects reported in read-across from studies on hydrodesulfurized kerosene kerosene, and jet fuels that included: a negative chromosome aberration (Human Peripheral Lymphocyte Chromosomal Aberration Test, Chinese Hamster Ovary Sister Chromatid Exchange Assay); and an in vivo inhalation exposure bone marrow chromosomal aberration study and micronucleus test in rats and mice (IUCLID sections 7.6.1 and 7.6.2).

C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were examined for reproductive toxicity in a 28 day combined repeated dose toxicity study with the reproduction / developmental toxicity screening test (OECD TG 422). C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered oral gavage at a dose of 0, 25, 150, or 1000 mg/kg/day to groups of Sprague-Dawley rats. It was concluded that C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids did not induce reproductive toxicity in the parental animals and no effects on the endocrine system were observed. Therefore, the NOAEL was determined to be >=1000 mg/kg bw/day.

Exposure in humans:

Seven studies were available on the irritation and/or sensitisation potential of several types of hydrocarbon solvents in volunteers. Clinical tests were conducted with populations ranging from 29 to 112 patients. None of the test substances elicited any sensitisation and/or irritation effects except C5-C20 paraffin, which showed a cumulative irritation effect at 75%. However, this substance was tested under occlusive patch, a condition which exacerbates the irritancy of hydrocarbon solvents. **Toxicokinetics:**

If C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are absorbed, they are typically metabolized by side chain oxidation to alcohol and carboxylic acid derivatives. These metabolites can be glucuronidated and excreted in the urine or further metabolized before being excreted. The majority of the metabolites are excreted in the urine and to a lower extent, in the faeces. Excretion is rapid with the majority of the elimination occurring within the first 24 hours of exposure. As a result of the lack of systemic toxicity and the ability of the parent material to undergo metabolism and rapid excretion, bioaccumulation of the test substance in the tissues is not likely to occur.

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are poorly absorbed dermally with an estimated overall percutaneous absorption rate of approximately 2ug/cm2/hr or 1% of the total applied fluid. Regardless of exposure route, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are rapidly metabolized and eliminated.

C14-C20 aliphatic, <2% aromatic hydrocarbon fluids are typically metabolized by side chain oxidation to alcohol and carboxylic acid derivatives. These metabolites can be glucuronidated and excreted in the urine or further metabolized before being

excreted. The majority of the metabolites are excreted in the urine and to a lower extent, in the faeces. Excretion is rapid with the majority of the elimination occurring within the first 24 hours of exposure. As a result of the lack of systemic toxicity and the ability of the parent material to undergo metabolism and rapid excretion, bioaccumulation of the test substance in the tissues is not likely to occur.

Short description of key information on absorption rate:

C14-C20 aliphatic, <2% aromatic hydrocarbon fluids can be dermally absorbed, although they tend to partition into the stratum corneum. When dermally absorbed, C14-C20 aliphatic, <2% aromatic hydrocarbon fluids are rapidly metabolized and eliminated. Approximately 34% of C14–C20 aliphatic, <2% aromatic hydrocarbon fluids are absorbed when ingested. C14–C20 aliphatic, <2% aromatic hydrocarbon fluids is poorly dermally absorbed. Absorption following inhalation is assumed to be similar to ingestion since exposures will be to aerosol. Regardless of exposure route, C14–C20 aliphatic, <2% aromatic hydrocarbon fluids are rapidly metabolized. Bioaccumulation of C14–C20 aliphatic, <2% aromatic hydrocarbon fluids are rapidly metabolized. Bioaccumulation of C14–C20 aliphatic, <2% aromatic hydrocarbon fluids are absorbed if ingested. C14-C20 aliphatic, <2% aromatic hydrocarbon fluids undergo metabolism and rapid excretion and low deposition, bioaccumulation of the test substance in the tissues is not likely to occur.

The fate of pristane (2,6,10,14-tetramethylpentadecane) was studied in rats after a single per os administration of 3H-labeled pristane. The balance study showed extensive fecal excretion (66%) mainly as unchanged hydrocarbon, whereas about 14% of ingested pristane was excreted in urine as pristane metabolites and tritiated water. After one week, 8.3% of the ingested 3H still was stored in the carcass and the radioactive distribution in tissues and organs showed a preferential incorporation into adipose tissue and liver. Over 75% of the radioactivity stored in the carcass was associated with pristane metabolites and tritiated water. Tissue metabolites were characterized by thin layer chromatography, gas chromatography, and mass spectrometric analyses. Four metabolites were identified: pristan-1-ol, pristane-2-ol, pristanic acid and 4,8,12-trimethyltridecanoic acid. These results demonstrated that pristane undergoes subterminal hydroxylation or terminal oxidation followed by the classical beta-oxidation process.

Labeled paraffins with 8-18 C atoms prepared from unsaturated hydrocarbons by addition of deuterium have been added in oily solution to normal rats' food. After six days an increase of deuterium content in the body fluid of all the rats was observed indicating that the labeled compounds had been metabolized. Deuterium was found in the fatty acids of the body fats and the liver lipids especially after feeding octadecane and hexadecane. Isolating oleic, stearic, and palmitic acids containing deuterium, indicated that methyl- and beta-oxidation of these hydrocarbons has occurred. Fatty acids resulting from the metabolism of hydrocarbons with shorter chains were not deposited but in these cases the urine contained fatty acids with higher deuterium content than after administration of octadecane and hexadecane. According to the deuterium content of the neutral fractions from the liver and body lipids all the hydrocarbons tested were deposited only to a small extent, the largest depots occurring mainly after feeding with octadecane and hexadecane.

Discussion on absorption rate:

There have not been any in vivo dermal absorption studies of C14 – C20 aliphatic, <2% aromatic hydrocarbon fluids, but there have been in vitro studies of similar constituents, particularly hexadecane.

The percutaneous absorption and cutaneous disposition of topically applied neat Jet-A, JP-8, and JP-8(100) jet fuels (25 µL/5 cm2) was examined by monitoring the absorptive flux of the marker components 14C naphthalene and 4H dodecane simultaneously applied non-occluded to isolated perfused porcine skin flaps (a = 4). Absorption of 14C hexadecane was estimated from JP-8 fuel. Absorption and disposition of naphthalene and dodecane were also monitored using a nonvolatile JP-8 fraction reflecting exposure to residual fuel that might occur 24 h after a jet fuel spill. In all studies, perfusate, stratum corneum, and skin concentrations were measured over 5 h. Naphthalene absorption had a clear peak absorptive flux at less than 1 h, while dodecane and hexadecane had prolonged, albeit significantly lower, absorption flux profiles. Within JP-8, absorption was (mean +/- SEM; % dose) hexadecane (0.018 +/- 0.08). The area under the curve (AUC) was determined to be (mean +/- SEM; % dose-h/mL): hexadecane (0.0017 +/- 0.0003).

The flux, permeability coefficient (Kp), and binding of hexadecane for porcine skin was determined to be 8.80 +/- 0.00 (nmol/cm2/h) x 10E-3. The permeability coefficient (Kp), and binding of hexadecane for human skin were determined to be 7.02 +/- 0.00 (nmol/cm2/h) x 10E-3. Factor of difference (FOD) in the permeability of pig and human skin was 1.28 for hexadecane. The FOD in binding of hexadecane to pig and human skin was found to be 0.76.

Over view of percutaneous absorption of hydrocarbon solvents

There are no studies of repeated dose toxicity of hydrocarbon solvents using the dermal route of administration. Accordingly, where it is necessary to calculate dermal DNELs, systemic data from studies utilizing other routes of administration, normally inhalation but also oral data, can be used in some situations. In accordance with ECHA guidance, read across from oral or inhalation data to dermal should account for differences in absorption where these exist. In fact, hydrocarbon solvents are poorly absorbed in most situations, in part because some are volatile and do not remain in contact with the skin for long periods of time and also because, due to their hydrophobic natures, do not partition well into aqueous environments and are poorly absorbed into the blood.

If these differences in relative absorption are introduced into the DNEL calculations to calculate external doses, the DNELs based on systemic effects are highly inflated. This seems potentially misleading as it implies that substances have different intrinsic hazards when encountered by different routes whereas in fact the differences are due ultimately to differences in absorbed dose.

Several authors have assessed the percutaneous absorption of higher molecular weight aliphatic constituents. Using porcine skin models the percutaneous absorption values for aliphatic constituents ranging from nonane to tetradecane were well below 1 μ g/cm2/hr. Rat and human skin are considered to be more permeable than human skin (so these numbers can be considered conservative.

Results of percutaneous absorption studies with human skin under in vivo conditions produced values ranging from $1 - 2 \mu g/kg/day$ for decane, undecane and dodecane.

With respect to aromatic hydrocarbons, most of the reported percutaneous absorption values) are less than 2 μ g/cm2/day. After considering all of the above, it seems reasonable to assume apparent that across the entire range of hydrocarbon solvent constituents, percutaneous absorption values are less than 2 μ g/cm2/day. Accordingly, when systemic dermal DNELs are calculated using route to route extrapolations, the values will not be corrected for differences in absorption. Rather, 2 μ g/cm2/hr should be used as a common percutaneous absorption rate for all hydrocarbon solvents for which dermal exposure estimates are provided.

SOLVENT NAPHTHA PETROLEUM, MEDIUM ALIPHATIC.	for petroleum: Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage (so-called Petrol Sniffer's Encephalopathy), delirium, seizures, and sudden death have been reported from repeated overexposure to some hydrocarbon solvents, naphthas, and gasoline This product may contain benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents Carcinogenicity : Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays. Reproductive Toxicity : Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed. Human Effects : Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation represents l
CYCLOHEXANONE	Cyclohexanone: Acute toxicity: Cyclohexanone exhibits low to slight acute toxicity by the oral and inhalation routes and is moderately toxic by the dermal route. It is an eye and skin irritant; however, it did not induce skin sensitisation. There has been no consistent indication that cyclohexanone causes neurotoxicity, although signs of CNS depression were noted at doses near the LD50. Therefore, this material could not be classified regarding its potential neurotoxicity to humans. Repeat dose toxicity: Upon repeated administration to rats in drinking water, the NOAEL was 4700 ppm after 25 weeks and the LOAEL was 3300 ppm after 2 years. Effects at higher concentrations were primarily body weight decreases. The NOAEL in published repeated dose inhalation studies was 100-190 ppm. Those values were based on either gray mottling of the lungs or ocular irritation and degenerative changes in the liver and kidney at higher concentrations. However, the NOAEL in those studies was not confirmed in more conclusive and GLP inhalation studies for reproductive and developmental effects (NOAEL = 650-1000 ppm). Genotoxicity: The majority of the experimental evidence indicates that cyclohexanone is not genotoxic, and this material was not considered to be carcinogenic in mice or rats following two years of exposure via the drinking water. Reproductive toxicity: In a two-generation reproduction study, decreased fertility was observed in rats exposed via inhalation at 1400 ppm but not at 500 ppm; however, the effect was found to be reversible following a post-exposure recovery period. The NOAEL of 500 ppm for this reproductive effect is 1000 times greater than the highest occupational personal monitoring value (0.5 ppm) reported. Developmental toxicity: Developmental studies indicate that foetal toxicity was present only at concentrations which were maternally toxic, and no malformations were detected. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prol
C9-AROMATIC HYDROCARBON SOLVENT	Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. For trimethylbenzenes: Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with

rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid . The

major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels . No effects were reported for rats exposed to a mixture of trimethyl-benzenes at 1700 ppm for 10 to 21 days

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5- trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia . **Genotoxicity:** Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established. Developmental toxicity, including possible develop- mental neurotoxicity, was evident in rats in a 3-generation reproductive study.

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation

For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines.

Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified.

Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs.

The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutagenicity

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3 , respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex/group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3).

Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including; number of mated females, copulatory index, copulatory interval. number of females delivering a litter, number of females delivering a live litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation,, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 ma/m3), which excludes analysis of the highest concentration due to excessive mortality. Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring. Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Not available. Refer to individual constituents.

ACETONE	for acetone: The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m3 for both rats and mice. Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals. The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 have been reported. Neurobehavioral studies wit
METHYL PROPYL KETOXIME	alpha,beta-Unsaturated oximes represent two previously unknown classes of prohaptens. Three putative metabolites were proposed as sensitising agents. These included two diastereometric alpha,beta-epoxy oximes and a nitro analogue. When tested in the LLNA, alpha,beta-epoxy oximes. Allergic Contact Dermattiis—Formation, Structural Requirements,and Reactivity of Skin Sensitizers. Ann-Therese Karlberg et al: Chem. Res. Toxicol. 2008, 21, pp 53–69 <u>http://ttp.cdc.gov/pub/Documents/OEL/06_%20Dotson/References/Karlberg_2008.pdf</u> MPKO is not a skin sensitizer under conditions of one study. Treatment with MPKO at 50 and 150 mg/kg/day was associated with major adverse effects upon the red blood cells. Many of the affected paramters showed complete recovery after the 14-day recovery period. The results observed in one study showed effects of MPKO assessed by haematology, organ weights and macroscopic appearance at dose levels of 50 mg/kg/day and above and microscopic tissue appearance were observed at dose levels of 15 mg/kg/day and above. After two weeks off dose complete recovery was seen in many clinical pathology parameters and recovery was in progress but not complete in males for high mean cell haemoglobin level, low mean cell haemoglobin level and high mean cell volume, organ weights, macroscopic and microscopic appearance. There were no adverse effects of treatment on the reproductive/developmental screening parameters assessed at least 150 mg/kg/day. Within the limitations of this study the No Observed Adverse Effect Level (NOAEL) for MPKO is considered to be 15 mg/kg/day for general systemic toxicity. The NOAEL for reproductive and developmental screening parameters is considered to be 150 mg/kg/day. The No Observed Adverse Effect Level (NOAEL) for MPKO is considered to be 150 mg/kg/day. Under the conditions of a 14-day study exposure to MPKO by inhalation at concentrations up to 298.9 pm (actual concentration; 6 hours/day, 5 days/week) was tolerated without obvious signs of toxicity. Therefore, the highest c
HYDROCARBONS, C9-11, N-ALKANES, ISOALKANES, CYCLICS, <2% AROMATICS & SOLVENT NAPHTHA PETROLEUM, MEDIUM ALIPHATIC.	Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver.
SOLVENT NAPHTHA PETROLEUM, MEDIUM ALIPHATIC. & CYCLOHEXANONE	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.
CYCLOHEXANONE & ACETONE	The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	*	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×
	1.6	gend: Y – Data either not ava	ilable or does not fill the criteria for classification

Legena: 🗙 – D

👽 – Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)		Species		Value	Source
VITRAIL COLOURS	Not Available	Not Available		Not Available		Not Available	Not Available
hydrocarbons C9-11	Endpoint	Test Duration (hr)		Species		Value	Source
n-alkanes, isoalkanes,	EC50(ECx)	96h		Algae or other aquatic plants		64mg/l	2
cyclics, <2% aromatics	EC50	96h		Algae or other aquatic plants		64mg/l	2
	Endpoint	Test Duration (hr)		Species		Value	Source
solvent naphtha	EC50(ECx)	48h		Crustacea		>100mg/l	1
petroleum, medium alinhatic	EC50	96h		Algae or other aquatic plants		450mg/l	1
anpiato	EC50	48h		Crustacea		>100mg/l	1
	Endpoint	Test Duration (hr)	Ş	species	V	alue	Source
	EC10(ECx)	72h	A	Algae or other aquatic plants	0.	4-7.93mg/l	4
cyclohexanone	EC50	72h	A	Igae or other aquatic plants	17	7.7-85.6mg/l	4
	EC50	48h	C	Crustacea	>'	100mg/l	2
	LC50	96h	F	Fish 527-732mg/l		27-732mg/l	2
	Endpoint	Test Duration (hr)		Species		Value	Source
	NOEC(ECx)	72h		Algae or other aquatic plants		1mg/l	1
C9-aromatic hydrocarbon	EC50	96h		Algae or other aquatic plants 64		64mg/l	2
Solvent	EC50	72h		Algae or other aquatic plants 19mg		19mg/l	1
	EC50	48h		Crustacea 6.14mg/l		6.14mg/l	1
	Endpoint	Test Duration (hr)	Sr	pecies	Value	•	Source
	NOEC(ECx)	48h	Fis	sh	0.001	mg/L	4
acetone	EC50	96h	Alç	gae or other aquatic plants	9.873	-27.684mg/l	4
	LC50	96h	Fis	sh	13.30	3mg/L	4
	EC50	48h	Cr	ustacea	6098.	4mg/L	5
	Endpoint	Test Duration (hr)		Species		Value	Source
methyl propyl ketoxime	NOEC(ECx)	72h		Algae or other aquatic plants		32mg/l	2
	EC50	72h		Algae or other aquatic plants		~54mg/l	2
Legend:	Extracted from 3. EPIWIN Sur ECETOC Aqui Vendor Data	n 1. IUCLID Toxicity Data 2. Europ ite V3.12 (QSAR) - Aquatic Toxic. atic Hazard Assessment Data 6.	pe ECHA Reg ity Data (Estir NITE (Japan)	yistered Substances - Ecotoxicolo nated) 4. US EPA, Ecotox databa - Bioconcentration Data 7. METI	ogical Infor ase - Aqua (Japan) -	mation - Aqua tic Toxicity Da Bioconcentra	atic Toxicity Ita 5. tion Data 8.

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites. **DO NOT** discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
cyclohexanone	LOW	LOW
acetone	LOW (Half-life = 14 days)	MEDIUM (Half-life = 116.25 days)
methyl propyl ketoxime	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
cyclohexanone	LOW (BCF = 2.45)
acetone	LOW (BCF = 0.69)
methyl propyl ketoxime	LOW (LogKOW = 2.1844)

Mobility in soil

Ingredient	Mobility
cyclohexanone	LOW (KOC = 15.15)
acetone	HIGH (KOC = 1.981)
methyl propyl ketoxime	LOW (KOC = 241.3)

SECTION 13 Disposal considerations

Waste treatment methods			
 Product / Packaging disposal Product / Packaging disposal Product / Packaging disposal Product / Packaging disposal Pi facture can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refroperating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Reduction Reuse Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intende has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shell considerations should also be applied in making decisions of this type. Note that properties of a material may change recycling or reuse may not always be appropriate. D NO Tallow wash water for treatment before disposal. It may be necessary to collect all wash water for treatment before disposal. It may be necessary to collect all wash water for treatment before disposal. It may be necessary to collect all wash water for treatment before disposal. It may be necessary to collect all wash water for treatment before disposal. It may be necessary to collect all wash water for treatment before disposal. It may be necessary to collect all wash water for treatment before disposal.	e used to er to laws d use. If it life in use, and		

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	•3Y

Land transport (ADG)

UN number	1263			
UN proper shipping name	PAINT (including MATERIAL (inclu	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Transport hazard class(es)	Class 3 Subrisk Not Applicable			
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisio	ns 163 223 367 7 5 L		

Air transport (ICAO-IATA / DGR)

UN number	1263			
UN proper shipping name	Paint (including paint, la	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)		
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	3 Not Applicable 3L		
Packing group	Ш	III		
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions Cargo Only Packing Ir Cargo Only Maximum Passenger and Cargo Passenger and Cargo Passenger and Cargo Passenger and Cargo	Anstructions Qty / Pack Packing Instructions Maximum Qty / Pack Limited Quantity Packing Instructions Limited Maximum Qty / Pack	A3 A72 A192 366 220 L 355 60 L Y344 10 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1263		
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk N	ot Applicable	
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number Special provisions Limited Quantities	F-E , S-E 163 223 367 955 5 L	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
hydrocarbons, C9-11, n-alkanes, isoalkanes,	Not Available

Issue Date: 04/05/2021 Print Date: 05/05/2021

LEFRANC & BOURGEOIS VITRAIL COLOURS

Product name	Group
cyclics, <2% aromatics	
solvent naphtha petroleum, medium aliphatic.	Not Available
cyclohexanone	Not Available
C9-aromatic hydrocarbon solvent	Not Available
acetone	Not Available
methyl propyl ketoxime	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics	Not Available
solvent naphtha petroleum, medium aliphatic.	Not Available
cyclohexanone	Not Available
C9-aromatic hydrocarbon solvent	Not Available
acetone	Not Available
methyl propyl ketoxime	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs	
Australian Inventory of Industrial Chemicals (AIIC)	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans	
Chemical Footprint Project - Chemicals of High Concern List		
solvent naphtha petroleum, medium aliphatic. is found on the following regul	atory lists	
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs	
Australian Inventory of Industrial Chemicals (AIIC)	International Agency for Research on Cancer (IARC) - Agents Classified by	
Chemical Footprint Project - Chemicals of High Concern List	the IARC Monographs - Group 1: Carcinogenic to humans	
cyclohexanone is found on the following regulatory lists		
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs	
Australian Inventory of Industrial Chemicals (AIIC)		
C9-aromatic hydrocarbon solvent is found on the following regulatory lists		
Australia Hazardous Chemical Information System (HCIS) - Hazardous	Chemical Footprint Project - Chemicals of High Concern List	
Chemicals	International Agency for Research on Cancer (IARC) - Agents Classified by	
Australian Inventory of Industrial Chemicals (AIIC)	the IARC Monographs	
acetone is found on the following regulatory lists		
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	Australian Inventory of Industrial Chemicals (AIIC)	
Australia Standard for the Uniform Scheduling of Medicines and Poisons		
(SUSMP) - Schedule 5		
methyl propyl ketoxime is found on the following regulatory lists		
Not Applicable		

National Inventory Status

National Inventory

Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	No (methyl propyl ketoxime)	
Canada - DSL	No (methyl propyl ketoxime)	
Canada - NDSL	No (hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics; solvent naphtha petroleum, medium aliphatic.; cyclohexanone; C9-aromatic hydrocarbon solvent; acetone; methyl propyl ketoxime)	
China - IECSC	No (methyl propyl ketoxime)	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	No (hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics; solvent naphtha petroleum, medium aliphatic.; C9-aromatic hydrocarbon solvent)	
Korea - KECI	No (methyl propyl ketoxime)	
New Zealand - NZIoC	Yes	
Philippines - PICCS	No (methyl propyl ketoxime)	
USA - TSCA	No (methyl propyl ketoxime)	
Taiwan - TCSI	No (methyl propyl ketoxime)	
Mexico - INSQ	No (methyl propyl ketoxime)	
Vietnam - NCI	No (methyl propyl ketoxime)	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 Other information

Revision Date	04/05/2021
Initial Date	04/05/2021

SDS Version Summary

Version	Date of Update	Sections Updated
2.1.2.1	26/04/2021	Regulation Change
2.1.3.1	03/05/2021	Regulation Change
2.1.3.1	04/05/2021	Fire Fighter (fire/explosion hazard), Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit₀ IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals **DSL:** Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

