Mod Podge Mega Glitter Jasco Pty Limited

Chemwatch: **7933-31** Version No: **2.1**

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **30/12/2024** Print Date: **30/12/2024** L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product name	Mod Podge Mega Glitter
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Jasco Pty Limited			
Address	1-5 Commercial Road Kingsgrove NSW 2208 Australia			
Telephone	61 2 9807 1555			
Fax	Not Available			
Website	www.jasco.com.au			
Email	quickinfo@jasco.com.au			

Emergency telephone number

Association / Organisation	Australian Poisons Centre		
Emergency telephone number(s)	13 11 26 (24/7)		
Other emergency telephone number(s)	Not Available		

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable			
Classification [1] Serious Eye Damage/Eye Irritation Category 2A				
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - A				

Label elements

Hazard pictogram(s)

Signal word Warning

Hazard statement(s)

	H319	Causes serious eye irritation.	
	AUH019	May form explosive peroxides.	

Precautionary statement(s) Prevention

P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264 Wash all exposed external body areas thoroughly after handling.	

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P337+P313	If eye irritation persists: Get medical advice/attention.			

Precautionary statement(s) Storage

Not Applicable

Page 2 of 18

Mod Podge Mega Glitter

Issue Date: **30/12/2024**Print Date: **30/12/2024**

Precautionary statement(s) Disposal

Not Applicable

Version No: 2.1

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight] Name			
57-55-6	1-10	propylene glycol		
34590-94-8	1-5	dipropylene glycol monomethyl ether		
127087-87-0	<1	4-nonylphenol, branched, ethoxylated		
577-11-7	<1	sodium dioctyl sulfosuccinate		
111-76-2	<1	ethylene glycol monobutyl ether		
107-98-2	<1	propylene glycol monomethyl ether - alpha isomer		
Not Available	balance	lngredients determined not to be hazardous		
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available			

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Nash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: ▶ Immediately remove all contaminated clothing, including footwear. ▶ Flush skin and hair with running water (and soap if available). ▶ Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:

- Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology]
- For acute or short term repeated exposures to ammonia and its solutions:
- Mild to moderate inhalation exposures produce headache, cough, bronchospasm, nausea, vomiting, pharyngeal and retrosternal pain and conjunctivitis. Severe inhalation produces laryngospasm, signs of upper airway obstruction (stridor, hoarseness, difficulty in speaking) and, in excessively, high doses, pulmonary oedema.
- Warm humidified air may soothe bronchial irritation.
- ▶ Test all patients with conjunctival irritation for corneal abrasion (fluorescein stain, slit lamp exam)
- Dyspneic patients should receive a chest X-ray and arterial blood gases to detect pulmonary oedema.

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Page 3 of 18 Issue Date: 30/12/2024 Print Date: 30/12/2024 Mod Podge Mega Glitter

▶ Alert Fire Brigade and tell them location and nature of hazard. ► Wear full body protective clothing with breathing apparatus Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Fire Fighting Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Combustible Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Fire/Explosion Hazard Combustion products include: carbon dioxide (CO2) sulfur oxides (SOx) other pyrolysis products typical of burning organic material. May emit poisonous fumes May emit corrosive fumes. HAZCHEM Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Version No: 2.1

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

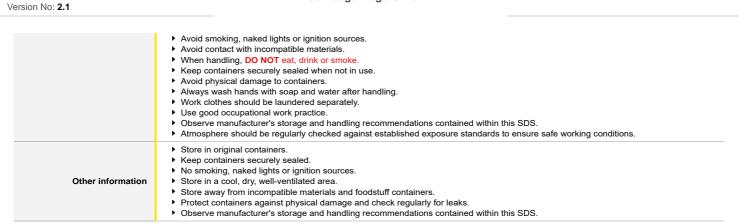
Safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe

- DO NOT concentrate by evaporation, or evaporate extracts to dryness, as residues may contain explosive peroxides with DETONATION
- Any static discharge is also a source of hazard.
- ▶ Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through a column of activated alumina.
- Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage.
- Add inhibitor to any distillate as required.
- When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely

The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.


Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.

- A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date.
- The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date.
- Unopened containers received from the supplier should be safe to store for 18 months.
- Opened containers should not be stored for more than 12 months.
- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked

Page **4** of **18**

Mod Podge Mega Glitter

Issue Date: **30/12/2024**Print Date: **30/12/2024**

Conditions for safe storage, including any incompatibilities

Suitable container	Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	▶ Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	propylene glycol	Propane-1,2-diol: particulates only	10 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	propylene glycol	Propane-1,2-diol total: (vapour & particulates)	150 ppm / 474 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	dipropylene glycol monomethyl ether	(2-Methoxymethylethoxy) propanol	50 ppm / 308 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	ethylene glycol monobutyl ether	2-Butoxyethanol	20 ppm / 96.9 mg/m3	242 mg/m3 / 50 ppm	Not Available	Not Available
Australia Exposure Standards	propylene glycol monomethyl ether - alpha isomer	Propylene glycol monomethyl ether	100 ppm / 369 mg/m3	553 mg/m3 / 150 ppm	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
propylene glycol	Not Available	Not Available
dipropylene glycol monomethyl ether	600 ppm	Not Available
4-nonylphenol, branched, ethoxylated	Not Available	Not Available
sodium dioctyl sulfosuccinate	Not Available	Not Available
ethylene glycol monobutyl ether	700 ppm	Not Available
propylene glycol monomethyl ether - alpha isomer	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
4-nonylphenol, branched, ethoxylated	Е	≤ 0.1 ppm
sodium dioctyl sulfosuccinate	E	≤ 0.01 mg/m³
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

Exposure controls

Appropriate engineering controls

CARE: Explosive vapour air mixtures may be present on opening vessels which have contained liquid ammonia. Fatalities have occurred Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Version No: 2.1

Page 5 of 18

Print Date: 30/12/2024

Issue Date: 30/12/2024

Mod Podge Mega Glitter

Type of Contaminant: Air Speed: 0.25-0.5 m/s (50solvent, vapours, degreasing etc., evaporating from tank (in still air). 100 f/min.) 0.5-1 m/s (100aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) 200 f/min.) direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active 1-2.5 m/s (200generation into zone of rapid air motion) 500 f/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone 2.5-10 m/s (500of very high rapid air motion) 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

Safety glasses with side shields

- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 591.

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- · frequency and duration of contact, chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term
- use.

· Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example

Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion

or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed

moisturiser is recommended

Body protection

See Other protection below

Other protection

Hands/feet protection

- Overalls. P.V.C apron.
- Barrier cream.

Page 6 of 18

Issue Date: **30/12/2024**Print Date: **30/12/2024**

Mod Podge Mega Glitter

- Skin cleansing cream.
- ▶ Eye wash unit.

Recommended material(s)

Version No: 2.1

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index"

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Mod Podge Mega Glitter

Material	СРІ
BUTYL	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
SARANEX-23	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Ansell Glove Selection

Glove — In order of recommendation
AlphaTec® Solvex® 37-675
AlphaTec® 15-554
AlphaTec® Solvex® 37-185
AlphaTec® 38-612
AlphaTec® 58-008
AlphaTec® 58-735
MICROFLEX® 93-260
TouchNTuff® 92-500
TouchNTuff® 92-605
TouchNTuff® 92-600

The suggested gloves for use should be confirmed with the glove supplier.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
 The wearer must be warned to leave the contaminated area immediately on
- In e wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

inormation on basic physical and chemical properties			
Appearance	Liquid.		
Physical state	Liquid Relative density (Water = 1) Not Available		Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	ot Available Decomposition temperature (°C) Not Available		Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available

Page 7 of 18

Mod Podge Mega Glitter

Issue Date: 30/12/2024 Print Date: 30/12/2024

Part Number: Version No: 2.1

Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7	
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. 	
Possibility of hazardous reactions	See section 7	
Conditions to avoid	See section 7	
Incompatible materials	See section 7	
Hazardous decomposition products	See section 5	

SECTION 11 Toxicological information

Information on toxicologica	I effects
-----------------------------	-----------

initial attorn of vapours of aerosors (mists, furnes), generated by the material during the course of normal nationing, may be damaging to the
health of the individual.
Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number
of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising
the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and

nq antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Ingestion

Inhaled

Accidental ingestion of the material may be damaging to the health of the individual

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Skin Contact

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals

On the basis of limited epidemiological or animal data, it has been concluded that prolonged inhalation of the material, in an occupational setting, may increase the risk of cancer in humans.

Studies with some glycol ethers (principally the monoethylene glycols) and their esters indicate reproductive changes, testicular atrophy, infertility and kidney function changes. The metabolic acetic acid derivatives of glycol ethers (alkoxyacetic acids), not the ether itself, have been found to be the proximal reproductive toxin in animals. The potency of these metabolites decreases significantly as the chain length of the ether increases. Consequently glycol ethers with longer substituents (e.g diethylene glycols, triethylene glycols) have not generally be associated with reproductive effects. One of the most sensitive indicators of toxic effects observed from many of the glycol ethers is an increase in the erythrocytic osmotic fragility in rats Which produces haemolytic anaemia). This appears to be related to the development of haemoglobinuria (blood in the urine) at higher exposure levels or as a result of chronic exposure.

Chronic

Glycol ethers based on propylene oxides, propylene glycol ethers, dipropylene glycol ethers and tripropylene glycol ethers are mainly available, commercially, as alpha-isomers (because of thermodynamic considerations); these are incapable of forming alkoxyacetic or alkoxypropionic acids as metabolites and therefore do not produce erythrocyte fragility unless contaminated by ethylene glycol ethers or to a significant degree by the beta-isomer . beta-Isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

Prolonged or repeated minor exposure to ammonia gas/vapour may cause long-term irritation to the eyes, nose and upper respiratory tract. Repeated exposure or prolonged contact may produce dermatitis, and conjunctivitis.

Other effects may include ulcerative changes to the mouth and bronchial and gastrointestinal disturbances. Adaptation to usually irritating concentrations may result in tolerance. In animals, repeated exposures to sub-lethal levels produces adverse effects on the respiratory tract, liver, kidneys and spleen. Exposure at 675 ppm for several weeks produced eye irritation in dogs and rabbits; corneal opacity, covering between a quarter to one half of the total surface area, was evident in rabbits

Mod Podge Mega Glitter	TOXICITY Not Available	IRRITATION Not Available
propylene glycol	тохісіту	IRRITATION
	Dermal (rabbit) LD50: 11890 mg/kg ^[2]	Eye (Rodent - rabbit): 100mg - Mild

Version No: 2.1

Page 8 of 18

Mod Podge Mega Glitter

Issue Date: 30/12/2024 Print Date: 30/12/2024

	Inhalation (Rat) LC50: >44.9 mg/l4h ^[1]	Eye (Rodent - rabbit): 500mg/24H - Mild
	Oral (Rat) LD50: 20000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
		Skin (Human - child): 30%/96H(continuous) - Moderate
		Skin (Human - man): 10%/2D
		Skin (Human - woman): 30%/96H - Mild
		Skin (Human): 104mg/3D (intermittent) - Moderate
		Skin (Human): 20%
		Skin (Human): 500mg/7D - Mild
		Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 9500 mg/kg ^[2]	Eye (Human): 8mg - Mild
dipropylene glycol	Oral (Rat) LD50: 5135 mg/kg ^[2]	Eye (Rodent - rabbit): 500mg/24H - Mild
monomethyl ether		Eye: no adverse effect observed (not irritating) ^[1]
		Skin (Rodent - rabbit): 500mg - Mild
		Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
4-nonylphenol, branched,	Oral (Rat) LD50: 1310 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]
ethoxylated		Eye: no adverse effect observed (not irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 2525 mg/kg ^[1]	Eye (Rodent - rabbit): 1% - Severe
	Oral (Rat) LD50: >1320 mg/kg ^[1]	Eye (Rodent - rabbit): 10%/24H - Severe
a a disses di a atad	oral (rat) 2500.1 1020 Highly	Eye (Rodent - rabbit): 10%/5D - Severe
sodium dioctyl sulfosuccinate		Eye (Rodent - rabbit): 250ug - Mild
		Eye: adverse effect observed (irritating) ^[1]
		Skin (Rodent - rabbit): 10mg/24H - Moderate
		Skin: adverse effect observed (irritating) ^[1]
	TOVICITY	IDDITATION
	TOXICITY Dermal (Guinea Pig) LD50: 210 mg/kg ^[2]	IRRITATION Eye (Rodent - rabbit): 100mg/24H - Moderate
thylene glycol monobutyl ether	Inhalation (Rat) LC50: 450 ppm4h ^[2]	Eye: adverse effect observed (irritating) ^[1]
ether	Oral (Rat) LD50: 250 mg/kg ^[2]	Skin (Rodent - rabbit): 500mg - Mild
		Skin: adverse effect observed (irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (Rodent - rabbit): 500mg/24H - Mild
propylene glycol nonomethyl ether - alpha	Inhalation (Rat) LC50: >6 mg/l4h ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
isomer	Oral (Rat) LD50: 3739 mg/kg ^[1]	Skin (Rodent - rabbit): 500mg - Mild
	. ,	Skin: no adverse effect observed (not irritating) ^[1]

specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

PROPYLENE GLYCOL

The acute oral toxicity of propylene glycol is very low, and large quantities are required to cause perceptible health damage in humans. Serious toxicity generally occurs only at plasma concentrations over 1 g/L, which requires extremely high intake over a relatively short period of time. It would be nearly impossible to reach toxic levels by consuming foods or supplements, which contain at most 1 g/kg of PG. Cases of propylene glycol poisoning are usually related to either inappropriate intravenous administration or accidental ingestion of large quantities by children. The potential for long-term oral toxicity is also low. Because of its low chronic oral toxicity, propylene glycol was classified by the U. S. Food and Drug Administration as "generally recognized as safe" (GRAS) for use as a direct food additive.

Prolonged contact with propylene glycol is essentially non-irritating to the skin. Undiluted propylene glycol is minimally irritating to the eye, and can produce slight transient conjunctivitis (the eye recovers after the exposure is removed). Exposure to mists may cause eye irritation, as well as upper respiratory tract irritation. Inhalation of the propylene glycol vapours appears to present no significant hazard in ordinary applications. However, limited human experience indicates that inhalation of propylene glycol mists could be irritating to some individuals It is therefore recommended that propylene glycol not be used in applications where inhalation exposure or human eye contact with the spray mists of these materials is likely, such as fogs for theatrical productions or antifreeze solutions for emergency eye wash stations. Propylene glycol is metabolised in the human body into pyruvic acid (a normal part of the glucose-metabolism process, readily converted to energy), acetic acid (handled by ethanol-metabolism), lactic acid (a normal acid generally abundant during digestion), and propionaldehyde

(a potentially hazardous substance). Propylene glycol shows no evidence of being a carcinogen or of being genotoxic.

Research has suggested that individuals who cannot tolerate propylene glycol probably experience a special form of irritation, but that they only rarely develop allergic contact dermatitis. Other investigators believe that the incidence of allergic contact dermatitis to propylene glycol may be greater than 2% in patients with eczema.

Version No: 2.1

Page 9 of 18 Mod Podge Mega Glitter

Issue Date: 30/12/2024 Print Date: 30/12/2024

One study strongly suggests a connection between airborne concentrations of propylene glycol in houses and development of asthma and allergic reactions, such as rhinitis or hives in children

Another study suggested that the concentrations of PGEs (counted as the sum of propylene glycol and glycol ethers) in indoor air, particularly bedroom air, is linked to increased risk of developing numerous respiratory and immune disorders in children, including asthma, hay fever, eczema, and allergies, with increased risk ranging from 50% to 180%. This concentration has been linked to use of water-based paints and water-based system cleansers.

Patients with vulvodynia and interstitial cystitis may be especially sensitive to propylene glycol. Women suffering with yeast infections may also notice that some over the counter creams can cause intense burning. Post menopausal women who require the use of an eostrogen cream may notice that brand name creams made with propylene glycol often create extreme, uncomfortable burning along the vulva and perianal area. Additionally, some electronic cigarette users who inhale propylene glycol vapor may experience dryness of the throat or shortness of breath . As an alternative, some suppliers will put Vegetable Glycerin in the "e-liquid" for those who are allergic (or have bad reactions) to propylene glycol.

Adverse responses to intravenous administration of drugs which use PG as an excipient have been seen in a number of people, particularly with large dosages thereof. Responses may include "hypotension, bradycardia... QRS and T abnormalities on the ECG, arrhythmia, cardiac arrest, serum hyperosmolality, lactic acidosis, and haemolysis". A high percentage (12% to 42%) of directly-injected propylene glycol is eliminated/secreted in urine unaltered depending on dosage, with the remainder appearing in its glucuronide-form. The speed of renal filtration decreases as dosage increases, which may be due to propylene glycol's mild anesthetic / CNS-depressant -properties as an alcohol. In one case, intravenous administration of propylene glycol-suspended nitroglycerin to an elderly man may have induced coma and

Propylene glycol is an approved food additive for dog food under the category of animal feed and is generally recognized as safe for dogs with an LD50 of 9 mL/kg. The LD50 is higher for most laboratory animals (20 mL/kg)

Similarly, propylene glycol is an approved food additive for human food as well. The exception is that it is prohibited for use in food for cats due to links to Heinz body anemia.

DIPROPYLENE GLYCOL MONOMETHYL ETHER

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may

4-NONYLPHENOL, BRANCHED, ETHOXYLATED

for linear material: Maternal effects, effects on fertility recorded.

For nonviphenol and its compounds:

produce conjunctivitis

Alkylphenols like nonylphenol and bisphenol A have estrogenic effects in the body. They are known as xenoestrogens. Estrogenic substances and other endocrine disruptors are compounds that have hormone-like effects in both wildlife and humans. Xenoestrogens usually function by binding to estrogen receptors and acting competitively against natural estrogens. Nonylphenol has been found to act as an agonist of GPER (G protein-coupled estrogen receptor),. Nonylphenol has been shown to mimic the natural hormone 17beta-estradiol, and it competes with the endogeous hormone for binding with the estrogen receptors ERalpha and ERbeta. Effects in pregnant women.

Subcutaneous injections of nonylphenol in late pregnancy causes the expression of certain placental and uterine proteins, namely CaBP-9k, which suggest it can be transferred through the placenta to the fetus. It has also been shown to have a higher potency on the first trimester placenta than the endogenous estrogen 17beta-estradiol. In addition, early prenatal exposure to low doses of nonylphenol cause an increase in apoptosis (programmed cell death) in placental cells. These "low doses" ranged from 10-13-10-9 M, which is lower than what is generally found in the environment.

Nonylphenol has also been shown to affect cytokine signaling molecule secretions in the human placenta. In vitro cell cultures of human placenta during the first trimester were treated with nonylphenol, which increase the secretion of cytokines including interferon gamma, interleukin 4. and interleukin 10, and reduced the secretion of tumor necrosis factor alpha. This unbalanced cytokine profile at this part of pregnancy has been documented to result in implantation failure, pregnancy loss, and other complications. Effects on metabolism

Nonylphenol has been shown to act as an obesity enhancing chemical or obesogen, though it has paradoxically been shown to have antiobesity properties. Growing embryos and newborns are particularly vulnerable when exposed to nonylphenol because low-doses can disrupt sensitive processes that occur during these important developmental periods. Prenatal and perinatal exposure to nonylphenol has been linked with developmental abnormalities in adipose tissue and therefore in metabolic hormone synthesis and release. Specifically, by acting as an estrogen mimic, nonylphenol has generally been shown to interfere with hypothalamic appetite control. The hypothalamus responds to the hormone leptin, which signals the feeling of fullness after eating, and nonylphenol has been shown to both increase and decrease eating behavior by interfering with leptin signaling in the midbrain. Nonylphenol has been shown mimic the action of leptin on neuropeptide Y and anorectic POMC neurons, which has an anti-obesity effect by decreasing eating behavior. This was seen when estrogen or estrogen mimics were injected into the ventromedial hypothalamus. On the other hand, nonylphenol has been shown to increase food intake and have obesity enhancing properties by lowering the expression of these anorexigenic neurons in the brain. Additionally, nonylphenol affects the expression of ghrelin: an enzyme produced by the stomach that stimulates appetite. Ghrelin expression is positively regulated by estrogen signaling in the stomach, and it is also important in guiding the differentiation of stem cells into adipocytes (fat cells). Thus, acting as an estrogen mimic, prenatal and perinatal exposure to nonylphenol has been shown to increase appetite and encourage the body to store fat later in life. Finally, long-term exposure to nonylphenol has been shown to affect insulin signaling in the liver of adult male rats. Cancer

Nonylphenol exposure has also been associated with breast cancer. It has been shown to promote the proliferation of breast cancer cells, due to its agonistic activity on ERalpha (estrogen receptor alpha) in estrogen-dependent and estrogen-independent breast cancer cells. Some argue that nonylphenol's suggested estrogenic effect coupled with its widespread human exposure could potentially influence hormone-dependent breast cancer disease

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers. Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69

Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners

PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1.4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations

Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000.

Version No: 2.1

Page 10 of 18

Mod Podge Mega Glitter

Issue Date: **30/12/2024**Print Date: **30/12/2024**

PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used

Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology

https://doi.org/10.5487/TR.2015.31.2.105

Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity.

Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates.

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose allergic contact dermatitis (ACD) to these compounds by patch testing

Overall, alcohol alkoxylates (AAs) are not expected to be systemically toxic, although some short chain ethylene glycol ethers, e.g. methyl and ethyl homologues are of concern for a range of adverse health effects. They include skin and eye irritation, liver and kidney damage, bone marrow and central nervous system (CNS) depression, testicular atrophy, developmental toxicity, and immunotoxicity. For higher propyl and butyl homologues, the toxicity involves haemolysis (anaemia) with secondary effects relating to haemosiderin accumulation in the spleen, liver and kidney, and compensatory haematopoiesis in the bone marrow. Systemic toxicity was shown to decrease with increasing alkyl chain lengths and/or alkoxylation degrees (ECETOC, 2005; US EPA, 2010). The chemicals ethylene glycol hexyl ether (with a longer alkyl chain length, CAS No. 112-25-4) and diethylene glycol butyl ether (with a higher ethoxylation degree, CAS No. 112-34-5) have no evidence of systemic effects including haemolysis.

Commercially available AAs are mixtures of homologues of varying carbon chain lengths and it is possible that some of the chemicals with an average alkyl chain length C >=6 may also contain shorter alkyl chains C <6. It is not practical to quantify the proportion of shorter C <6 chain lengths present in such chemicals, or these shorter chain lengths may not be present at all. The available data suggest a lack of systemic toxicity for the AE chemicals with potential short alkyl chain presence (NICNASa); therefore, the toxicity of the chemicals in this assessment is unlikely to be significantly affected by the presence of shorter chain alkyl groups

this assessment is unlikely to be significantly affected by the presence of shorter chain alkyl groups.

Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units:

EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes)

EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

EO > 15-20 gives Harmful (Xn) with R22-41 >20 EO is not classified (CESIO 2000)

Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin).

AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for t

AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use.

For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers):

Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr. Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that

of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and

Version No: 2.1

Page 11 of 18

Mod Podge Mega Glitter

Issue Date: **30/12/2024**Print Date: **30/12/2024**

tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight.

Metabolism: The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected *in vivo*. The principal metabolite of TGME is believed to be 2-[2-(2-methoxy)ethoxy] acetic acid. Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers.

The metabolities of category members are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur

Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death. Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation.

Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity

In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation. Due to a high incidence of similar spontaneous changes

in normal New Zealand White rabbits , the testicular effects were considered not to be related to treatment . Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered unremarkable.

A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day . In this study, significantly-increased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or

haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically-significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic toxicity

Mutagenicity: Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity.

Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day rounded for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day).

Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1,000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain. for nonylphenol:

Nonylphenol was studied for oral toxicity in rats in a 28-day repeat dose toxicity test at doses of 0, 4, 15, 60 and 250 mg/kg/day. Changes suggesting renal dysfunction were mainly noted in both sexes given 250 mg/kg. Liver weights were increased in males given 60 mg/kg and in both sexes given 250 mg/kg group. Histopathologically, hypertrophy of the centrilobular hepatocytes was noted in both sexes given 250 mg/kg. Kidney weights were increased in males given 250 mg/kg and macroscopically, disseminated white spots, enlargement and pelvic dilatation were noted in females given 250 mg/kg. Histopathologically, the following lesions were noted in the 250 mg/kg group: basophilic change of the proximal tubules in both sexes, single cell necrosis of the proximal tubules, inflammatory cell infiltration in the interstitium and casts in females, basophilic change and dilatation of the collecting tubules in both sexes, simple hyperplasia of the pelvic mucosa and pelvic dilatation in females. In the urinary bladder, simple hyperplasia was noted in both sexes given 250 mg/kg. In the caecum, macroscopic dilatation was noted in both sexes given 250 mg/kg. Almost all changes except those in the kidney disappeared after a 14-day recovery period. The NOELs for males and females are considered to be 15 mg/kg/day and 60 mg/kg/day, respectively, under the conditions of the present study.

Nonylphenol was not mutagenic to Salmonella typhimurium, TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvrA, with or without an exogeneous metabolic activation system.

Nonylphenol induced neither structural chromosomal aberrations nor polyploidy in CHL/IU cells, in the absence or presence of an exogenous metabolic activation system.

SODIUM DIOCTYL SULFOSUCCINATE

Structural changes in blood vessels recorded.

for dialkyl sodium sulfosuccinates:

The existing data on diethylhexyl sodium sulfosuccinate are thought to be sufficient to support the safety of the entire family of sulfosuccinate diesters of similar alkyl chain length, which are symmetrically substituted, and have similar functions in cosmetic formulations. Numerous studies examining the effect of the oral administration of diethylhexyl sodium sulfosuccinate, both dietary and by gavage, on the reproductive and developmental toxicity in rats were performed; one study was performed in mice. In a developmental study in mice and rats of a test substance containing 0.4% (w/v) diethylhexyl sodium sulfosuccinate, the NOAEL for maternal toxicity and teratogenic effects for both mice and rats was 400 mg/kg bw. In another developmental toxicity study in rats, the parental NOAEL was 400 mg/kg bw for a test substance containing 0.4% (w/v) diethylhexyl sodium sulfosuccinate. In a study in which gravid female Sprague-Dawley rats were fed a diet containing up to 2% diethylhexyl sodium sulfosuccinate, no adverse effects on maternal or fetal parameters were observed in the 1% test group, but in the 2% test group, significant incidences of resorptions and gross abnormalities, primarily exencephaly and, at times, spina bifida,anophthalmia, and associated skeletal defects, were reported. The NOAEL for maternal toxicity and teratogenic effects was 1%. In contrast to oral exposure, these esters are not expected to absorb through the skin to any significant extent, and the reproductive effects observed in test animals orally exposed to diethylhexyl sodium sulfosuccinate are not likely effects of topical application of cosmetics containing these ingredients.

Consistent with this view, the Cosmetics Ingredient Review (CIR) Expert Panel:noted that acute dermal toxicity of undiluted diethylhexyl sodium sulfosuccinate was quite low, with a dermal LD50 of >10 g/kg in rabbit. However dialkyl sulfosuccinate salts may enhance the penetration of other ingredients through the skin.

Under the exaggerated exposure conditions of the two repeated insult patch tests (RIPTs; continuous occlusive patch testing) presented in an earlier safety assessment of sodium diethylhexyl sulfosuccinate, the ingredient is a cumulative irritant, though not a sensitizer. Diethylhexyl sodium sulfosuccinate was used as a positive control in a Draize ocular irritation study; 10% diethylhexyl sodium sulfosuccinate was severely irritating to rabbit eyes, inducing perforated damages.

Metabolism and excretion studies have given mixed results on the primary route of excretion of diethylhexyl sodium sulfosuccinate; it does appear that diethylhexyl sodium sulfosuccinate is metabolized prior to excretion, and most of the dose is excreted within 24 h of dosing. In one oral study in rats, 66% of the radioactivity was excreted in the faeces and only 25-35% in urine, within 24-48 h after dosing. In other rat

Version No: 2.1

Page 12 of 18

Mod Podge Mega Glitter

Issue Date: **30/12/2024**Print Date: **30/12/2024**

studies, with oral and i.v. administration, the majority of the radioactivity was excreted in the urine, rather than in the faeces. Studies were also performed in rabbits and dogs, and again conflicting results were obtained. In rabbits, 87% and 69.7% of the radioactivity was excreted in the urine following oral and i.v. dosing, respectively; in dogs, approximately 70% of the radioactivity was excreted in the faeces at 24-48 h after oral and iv. dosing.

The limited data available from short-term pharmaceutical studies in test animals exposed to diethylhexyl sodium sulfosuccinate aerosols suggest little potential for respiratory effects. This ingredient is reportedly used at concentrations up to 0.25% in cosmetic products that may be aerosolised. The Panel noted that 95%-99% of droplets/particles would not be respirable to any appreciable amount. Further more, droplets/particles deposited in the nasopharyngeal or bronchial regions of the respiratory tract present no toxicological concerns based on the chemical properties and biological properties of this ingredient. Coupled with the small actual exposure in the breathing zone and the concentrations at which the ingredients are used, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects.

The Panel considered other data available to characterize the potential for the dialkyl sulfosuccinate salts to cause systemic toxicity, irritation, sensitization, reproductive and developmental toxicity, genotoxicity and carcinogenicity. They noted the lack of systemic toxicity in several acute and subchronic oral exposure studies, little or no irritation or sensitization in tests of dermal and ocular exposure, the absence of genotoxicity in Ames tests, and the lack of carcinogenicity in a subchronic oral exposure study.

The CIR Expert Panel concluded that eight dialkyl sulfosuccinate salts are safe in the present practices of use and concentration in cosmetics described in this safety assessment when formulated to be non-irritating.

cosmetics described in this safety assessment when formulated to be non-irritating.

Cosmetics Ingredient Review (CIR) Expert Panel: Safety Assessment of Dialkyl Sulfosuccinate Salts as Used in Cosmetics: September 2013

Literature data for other anionic surfactants (e.g. alkyl sulfates, alkane sulfonates and a-olefin sulfonates) demonstrated a similar toxicological and toxicokinetic/metabolic profile as for the sullfosuccinate esters/amides. For these surfactants high oral absorption rates (90%) and low dermal absorption rates (<1%) were observed. For risk characterisation of the registered substance, conservative absorption rates of 90, 2 and 10% were taken into account for oral, dermal and inhalation routes, respectively for alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates

Most chemicals of this category are not defined substances, but mixtures of homologues with different alkyl chain lengths. Alpha-olefin sulfonates are mixtures of alkene sulfonate and hydroxyl alkane sulfonates with the sulfonate group in the terminal position and the double bond, or hydroxyl group, located at a position in the vicinity of the sulfonate group.

Common physical and/or biological pathways result in structurally similar breakdown products, and are, together with the surfactant properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health.

Acute toxicity: These substances are well absorbed after ingestion; penetration through the skin is however poor. After absorption, these chemicals are distributed mainly to the liver.

Acute oral LD50 values of alkyl sulfates in rats and/or mice were (in mg/kg):

C10-: 290-580

C10-16-, and C12-; 1000-2000

C12-14, C12-15, C12-16, C12-18 and C16-18-; >2000

C14-18. C16-18-: >5000

The clinical signs observed were non-specific (piloerection, lethargy, decreased motor activity and respiratory rate, diarrhoea). At necropsy the major findings were irritation of the gastrointestinal tract and anemia of inner organs.

Based on limited data, the acute oral LD50 values of alkane sulfonates and alpha-olefin sulfonates of comparable chain lengths are assumed to be in the same range.

The counter ion does not appear to influence the toxicity in a substantial way.

Acute dermal LD50 values of alkyl sulfates in rabbits (mg/ kg):

C12-; 200

C12-13 and C10-16-;>500

Apart from moderate to severe skin irritation, clinical signs included tremor, tonic-clonic convulsions, respiratory failure, and body weight loss in the study with the C12- alkyl sulfate and decreased body weights after administration of the C10-16- alkyl sulfates. No data are available for alkane sulfonates but due to a comparable metabolism and effect concentrations in long-term studies effect concentrations are expected to be in the same range as found for alkyl sulfates.

There are no data available for acute inhalation toxicity of alkyl sulfates, alkane sulfonates or alpha-olefin sulfonates.

In skin irritation tests using rabbits (aqueous solutions, OECD TG 404): C8-14 and C8-16 (30%), C12-14 (90%), C14-18 (60%)- corrosive

Under occlusive conditions:

C12, and C12-14 (25%), C12-15-, C13-15 and C15-16 (5-7%) - moderate to strong irritants

sulfonated surfactants has produced sensitisation dermatitis in predisposed individuals

Comparative studies investigating skin effects like transepidermal water loss, epidermal electrical conductance, skin swelling, extraction of amino acids and proteins or development of erythema in human volunteers consistently showed a maximum of effects with C12-alkyl sulfate, sodium; this salt is routinely used as a positive internal control giving borderline irritant reactions in skin irritation studies performed on humans. As the most irritant alkyl sulfate it can be concluded that in humans 20% is the threshold concentration for irritative effects of alkyl sulfates in general. No data were available with regard to the skin irritation potential of alkane sulfonates. Based on the similar chemical structure they are assumed to exhibit similar skin irritation properties as alkyl sulfates or alpha-olefin sulfonates of comparable chain lengths.

In eye irritation tests, using rabbits, C12-containing alkyl sulfates (>10% concentration) were severely irritating and produced irreversible corneal effects. With increasing alkyl chain length, the irritating potential decreases, and C16-18 alkyl sulfate sodium, at a concentration of 25%, was only a mild irritant.

Concentrated C14-16- alpha-olefin sulfonates were severely irritating, but caused irreversible effects only if applied as undiluted powder. At concentrations below 10% mild to moderate, reversible effects, were found. No data were available for alkane sulfonates

Alkyl sulfates and C14-18 alpha-olefin sulfonates were not skin sensitisers in animal studies. No reliable data were available for alkane sulfonates. Based on the similar chemical structure, no sensitisation is expected.

However anecdotal evidence suggests that sodium lauryl sulfate causes pulmonary sensitisation resulting in hyperactive airway dysfunction and pulmonary allergy accompanied by fatigue, malaise and aching. Significant symptoms of exposure can persist for more than two years and can be activated by a variety of non-specific environmental stimuli such as a exhaust, perfumes and passive smoking. Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. Repeated skin contact with some

Repeat dose toxicity: After repeated oral application of alkyl sulfates with chain lengths between C12 and C18, the liver was the only target organ for systemic toxicity. Adverse effects on this organ included an increase in liver weight, enlargement of liver cells, and elevated levels of liver enzymes. The LOAEL for liver toxicity (parenchymal hypertrophy and an increase in comparative liver weight) was 230 mg/kg/day (in a 13 week study with C16-18 alkyl sulfate, sodium). The lowest NOAEL in rats was 55 mg/kg/day (in a 13 week study with C12-alkyl sulfate,

C14- and C14-16-alpha-olefin sulfonates produced NOAELs of 100 mg/kg/day (in 6 month- and 2 year studies). A reduction in body weight gain was the only adverse effect identified in these studies.

No data were available with regard to the repeated dose toxicity of alkane sulfonates. Based on the similarity of metabolic pathways between alkane sulfonates, alkyl sulfates and alkyl-olefin sulfonates, the repeated dose toxicity of alkane sulfonates is expected to be similar with NOAEL and LOAEL values in the same range as for alkyl sulfates and alpha-olefin sulfonates, i.e. 100 and 200-250 mg/kg/day, respectively, with the liver as potential target organ.

Version No: 2.1

Page 13 of 18 Mod Podge Mega Glitter

Issue Date: **30/12/2024**Print Date: **30/12/2024**

Genotoxicity: Alkyl sulfates of different chain lengths and with different counter ions were not mutagenic in standard bacterial and mammalian cell systems both in the absence and in the presence of metabolic activation. There was also no indication for a genotoxic potential of alkyl sulfates in various in vivo studies on mice (micronucleus assay, chromosome aberration test, and dominant lethal assay). alpha-Olefin sulfonates were not mutagenic in the Ames test, and did not induce chromosome aberrations in vitro. No genotoxicity data were available for alkane sulfonates. Based on the overall negative results in the genotoxicity assays with alkyl sulfates and alpha-olefin sulfonates, the absence of structural elements indicating mutagenicity, and the overall database on different types of sulfonates, which were all tested negative in mutagenicity assays, a genotoxic potential of alkane sulfonates is not expected.

Carcinogenicity: Alkyl sulfates were not carcinogenic in feeding studies with male and female Wistar rats fed diets with C12-15 alkyl sulfate sodium for two years (corresponding to doses of up to 1125 mg/kg/day).

alpha-Olefin sulfonates were not carcinogenic in mice and rats after dermal application, and in rats after oral exposure. No carcinogenicity studies were available for the alkane sulfonates.

Reproductive toxicity: No indication for adverse effects on reproductive organs was found in various oral studies with different alkyl sulfates. The NOAEL for male fertility was 1000 mg/kg/day for sodium dodecyl sulfate. In a study using alpha-olefin sulfonates in male and female rats, no adverse effects were identified up to 5000 ppm.

Developmental toxicity: In studies with various alkyl sulfates (C12 up to C16-18- alkyl) in rats, rabbits and mice, effects on litter parameters were restricted to doses that caused significant maternal toxicity (anorexia, weight loss, and death).

The principal effects were higher foetal loss and increased incidences of total litter losses. The incidences of malformations and visceral and skeletal anomalies were unaffected apart from a higher incidence of delayed ossification or skeletal variation in mice at > 500 mg/kg bw/day indicative of a delayed development. The lowest reliable NOAEL for maternal toxicity was about 200 mg/kg/day in rats, while the lowest NOAELs in offspring were 250 mg/kg/day in rats and 300 mg/kg/day for mice and rabbits.

For alpha-olefin sulfonates (C14-16-alpha-olefin sulfonate, sodium) the NOAEL was 600 mg/kg/day both for maternal and developmental toxicity

No data were available for the reproductive and developmental toxicity of alkane sulfonates. Based on the available data, the similar toxicokinetic properties and a comparable metabolism of the alkyl sulfates and alkane sulfonates, alkane sulfonates are not considered to be developmental toxicants.

Although the database for category members with C<12 is limited, the available data are indicating no risk as the substances have comparable toxicokinetic properties and metabolic pathways. In addition, longer-term studies gave no indication for adverse effects on reproductive organs with different alkyl sulfates

ETHYLENE GLYCOL MONOBUTYL ETHER

NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed to high concentrations of this substance by all routes. **
ASCC (NZ) SDS

For ethylene glycol monoalkyl ethers and their acetates (EGMAEs):

Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates.

EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers.

Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LC0 > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2620 mg/m3) for EGBEA to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 435 mg/kg bw (EGBE) to 1500 mg/kg bw (EGBEA). Overall these category members can be considered to be of low to moderate acute toxicity. All category members cause reversible irritation to skin and eyes, with EGBEA less irritating and EGHE more irritating than the other category members. EGPE and EGBE are not sensitisers in experimental animals or humans. Signs of acute toxicity in rats, mice and rabbits are consistent with haemolysis (with the exception of EGHE) and non-specific CNS depression typical of organic solvents in general. Alkoxyacetic acid metabolites, propoxyacetic acid (PAA) and butoxyacetic acid (BAA), are responsible for the red blood cell hemolysis. Signs of toxicity in humans deliberately ingesting cleaning fluids containing 9-22% EGBE are similar to those of rats, with the exception of haemolysis. Although decreased blood haemoglobin and/or haemoglobinuria were observed in some of the human cases, it is not clear if this was due to haemolysis or haemodilution as a result of administration of large volumes of fluid. Red blood cells of humans are many-fold more resistant to toxicity from EGPE and EGBE *in vitro* than those of rats.

Repeat dose toxicity: The fact that the NOAEL for repeated dose toxicity of EGBE is less than that of EGPE is consistent with red blood cells being more sensitive to EGBE than EGPE. Blood from mice, rats, hamsters, rabbits and baboons were sensitive to the effects of BAA in vitro and displayed similar responses, which included erythrocyte swelling (increased haematocrit and mean corpuscular hemoglobin), followed by hemolysis. Blood from humans, pins dogs cats, and quines pins was less sensitive to haemolysis by BAA in vitro.

followed by hemolysis. Blood from humans, pigs, dogs, cats, and guinea pigs was less sensitive to haemolysis by BAA *in vitro*.

Mutagenicity: In the absence and presence of metabolic activation, EGBE tested negative for mutagenicity in Ames tests conducted in *S. typhimurium* strains TA97, TA98, TA100, TA1535 and TA1537 and EGHE tested negative in strains TA98, TA100, TA1535, TA1537 and TA1538. *In vitro* cytogenicity and sister chromatid exchange assays with EGBE and EGHE in Chinese Hamster Ovary Cells with and without metabolic activation and in vivo micronucleus tests with EGBE in rats and mice were negative, indicating that these glycol ethers are not genotoxic.

Carcinogenicity: In a 2-year inhalation chronic toxicity and carcinogenicity study with EGBE in rats and mice a significant increase in the incidence of liver haemangiosarcomas was seen in male mice and forestomach tumours in female mice. It was decided that based on the mode of action data available, there was no significant hazard for human carcinogenicity

Reproductive and developmental toxicity. The results of reproductive and developmental toxicity studies indicate that the glycol ethers in this category are not selectively toxic to the reproductive system or developing fetus, developmental toxicity is secondary to maternal toxicity. The repeated dose toxicity studies in which reproductive organs were examined indicate that the members of this category are not associated with toxicity to reproductive organs (including the testes).

Results of the developmental toxicity studies conducted via inhalation exposures during gestation periods on EGPE (rabbits -125, 250, 500 ppm or 531, 1062, or 2125 mg/m3 and rats - 100, 200, 300, 400 ppm or 425, 850, 1275, or 1700 mg/m3), EGBE (rat and rabbit - 25, 50, 100, 200 ppm or 121, 241, 483, or 966 mg/m3), and EGHE (rat and rabbit - 20.8, 41.4, 79.2 ppm or 124, 248, or 474 mg/m3) indicate that the members of the category are not teratogenic.

The NOAELs for developmental toxicity are greater than 500 ppm or 2125 mg/m3 (rabbit-EGPE), 100 ppm or 425 mg/m3 (rat-EGPE), 50 ppm or 241 mg/m3 (rat EGBE) and 100 ppm or 483 mg/m3 (rabbit EGBE) and greater than 79.2 ppm or 474 mg/m3 (rat and rabbit-EGHE). Exposure of pregnant rats to ethylene glycol monobutyl ether (2-butoxyethanol) at 100 ppm or rabbits at 200 ppm during organogenesis resulted in maternal toxicity and embryotoxicity including a decreased number of viable implantations per litter. Slight foetoxicity in the form of poorly ossified or unossified skeletal elements was also apparent in rats. Teratogenic effects were not observed in other species. At least one researcher has stated that the reproductive effects were less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, macrocytosis, abnormally large red cells and abnormal red cell fragility.

Exposure of male and female rats and mice for 14 weeks to 2 years produced a regenerative haemolytic anaemia and subsequent effects on the haemopoietic system in rats and mice. In addition, 2-butoxyethanol exposures caused increases in the incidence of neoplasms and nonneoplastic lesions (1). The occurrence of the anaemia was concentration-dependent and more pronounced in rats and females. In this study it was proposed that 2-butoxyethanol at concentrations of 500 ppm and greater produced an acute disseminated thrombosis and bone infarction in male and female rats as a result of severe acute haemolysis and reduced deformability of erythrocytes or through anoxic damage to endothelial cells that compromise blood flow. In two-year studies, 2-butoxyethanol continued to affect circulating erythroid mass, inducing a responsive anaemia. Rats showed a marginal increase in the incidence of benign or malignant pheochromocytomas (combined) of the adrenal gland. In mice, 2-butoxyethanol exposure resulted in a concentration dependent increase in the incidence of squamous cell papilloma or carcinoma of the forestomach. It was hypothesised that exposure-induced irritation produced inflammatory and hyperplastic effects in the forestomach and that the neoplasia were associated with a continuation of the injury/ degeneration process. Exposure also produced a concentration -dependent increase in the incidence of haemangiosarcoma of the liver of male mice and hepatocellular carcinoma.

Version No: 2.1

Page 14 of 18

Mod Podge Mega Glitter

Issue Date: **30/12/2024**Print Date: **30/12/2024**

1: NTP Toxicology Program Technical report Series 484, March 2000.

PROPYLENE GLYCOL MONOMETHYL ETHER -ALPHA ISOMER

NOTE: For PGE - mixed isomers: Exposure of pregnant rats and rabbits to the substance did not give rise to teratogenic effects at concentrations up to 3000 ppm. Foetotoxic effects were seen in rats but not in rabbits at this concentration; maternal toxicity was noted in both species.

PROPYLENE GLYCOL & SODIUM DIOCTYL SULFOSUCCINATE

DIPROPYLENE GLYCOL MONOMETHYL ETHER &

PROPYLENE GLYCOL

ALPHA ISOMER

MONOMETHYL ETHER -

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 is >0,040 mg/m3. For PnB is moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating None are skin sensitisers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested).

Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members. One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health.

In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity.

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPMA and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice.

DIPROPYLENE GLYCOL MONOMETHYL ETHER & 4-NONYLPHENOL, BRANCHED, ETHOXYLATED & ETHYLENE GLYCOL MONOBUTYL ETHER

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

4-NONYLPHENOL, BRANCHED, ETHOXYLATED & SODIUM DIOCTYL SULFOSUCCINATE & ETHYLENE GLYCOL MONOBUTYL ETHER

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

💢 – Data either not available or does not fill the criteria for classification

Data evailable to make classification

Page **15** of **18**

Mod Podge Mega Glitter

Issue Date: **30/12/2024**Print Date: **30/12/2024**

SECTION 12 Ecological information

Toxicity

Version No: 2.1

Mod Podge Mega Glitter	Not Available Endpoint	Not Available	Not Available	Not Available	Not Availab
<u> </u>	Endnoint				
-	Liidpollit	Test Duration (hr)	Species	Value	Source
-	EC50	96h	Algae or other aquatic plants	19000mg/l	2
	EC50	72h	Algae or other aquatic plants	19300mg/l	2
propylene glycol	EC50	48h	Crustacea	>114.4mg/L	4
-	NOEC(ECx)	336h	Algae or other aquatic plants	<5300mg/l	1
-	LC50	96h	Fish	710mg/L	4
	Endpoint	Test Duration (hr)	Species	Value	Source
-	EC50	96h	Algae or other aquatic plants	>969mg/l	2
dipropylene glycol	EC50	72h	Algae or other aquatic plants	>969mg/l	2
monomethyl ether	NOEC(ECx)	528h	Crustacea	>=0.5mg/l	2
-	EC50	48h	Crustacea	1930mg/l	2
-	LC50	96h	Fish	>1000mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
-	EC50	96h	Algae or other aquatic plants	12mg/l	2
4-nonylphenol, branched,	EC50	72h	Algae or other aquatic plants	19.485mg/l	2
ethoxylated	NOEC(ECx)	96h	Algae or other aquatic plants	8mg/l	2
-	EC50	48h	Crustacea	14mg/l	2
-	LC50	96h	Fish	>10mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
-	BCF	1008h	Fish	<0.9	7
sodium dioctyl	EC50	72h	Algae or other aquatic plants	38.1- 40.8mg/l	4
sulfosuccinate	EC50	48h	Crustacea	6.6mg/l	2
-	NOEC(ECx)	96h	Fish	0.059mg/l	4
-	LC50	96h	Fish	12.5mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
***	EC50	96h	Algae or other aquatic plants	720mg/l	2
thylene glycol monobutyl	EC50	72h	Algae or other aquatic plants	623mg/l	2
ether	EC10(ECx)	48h	Crustacea	7.2mg/l	2
-	EC50	48h	Crustacea	164mg/l	2
-	LC50	96h	Fish	1250mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	96h	Algae or other aquatic plants	>1000mg/l	2
propylene glycol	EC50	72h	Algae or other aquatic plants	>500mg/l	2
monomethyl ether - alpha	EC50(ECx)	168h	Algae or other aquatic plants	>1000mg/l	1
isomer	EC50	48h	Crustacea	23300mg/l	1
-	LC50	96h	Fish	>2000mg/l	Not Availab

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
propylene glycol	LOW	LOW
dipropylene glycol monomethyl ether	HIGH	HIGH
ethylene glycol monobutyl ether	LOW (Half-life = 56 days)	LOW (Half-life = 1.37 days)
propylene glycol monomethyl ether - alpha isomer	LOW (Half-life = 56 days)	LOW (Half-life = 1.7 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
propylene glycol	LOW (BCF = 1)

Page 16 of 18 Mod Podge Mega Glitter

Issue Date: 30/12/2024 Print Date: 30/12/2024

Ingredient Bioaccumulation dipropylene glycol monomethyl ether LOW (BCF = 100) 4-nonylphenol, branched, ethoxylated MEDIUM (LogKOW = 4.33) sodium dioctyl sulfosuccinate LOW (BCF = 3.78) ethylene glycol monobutyl ether LOW (BCF = 2.51) propylene glycol monomethyl ether - alpha isomer LOW (BCF = 2)

Mobility in soil

Version No: 2.1

Ingredient	Mobility
propylene glycol	HIGH (Log KOC = 1)
dipropylene glycol monomethyl ether	LOW (Log KOC = 10)
ethylene glycol monobutyl ether	HIGH (Log KOC = 1)
propylene glycol monomethyl ether - alpha isomer	HIGH (Log KOC = 1)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

·	
Product name	Group
propylene glycol	Not Available
dipropylene glycol monomethyl ether	Not Available
4-nonylphenol, branched, ethoxylated	Not Available
sodium dioctyl sulfosuccinate	Not Available
ethylene glycol monobutyl ether	Not Available
propylene glycol monomethyl ether - alpha isomer	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
propylene glycol	Not Available
dipropylene glycol monomethyl ether	Not Available
4-nonylphenol, branched, ethoxylated	Not Available
sodium dioctyl sulfosuccinate	Not Available
ethylene glycol monobutyl ether	Not Available
propylene glycol monomethyl ether - alpha isomer	Not Available

Part Number: Version No: 2.1

Mod Podge Mega Glitter

Issue Date: **30/12/2024**Print Date: **30/12/2024**

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

propylene glycol is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

dipropylene glycol monomethyl ether is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

4-nonylphenol, branched, ethoxylated is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

sodium dioctyl sulfosuccinate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

ethylene glycol monobutyl ether is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

propylene glycol monomethyl ether - alpha isomer is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non- Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (propylene glycol; dipropylene glycol monomethyl ether; 4-nonylphenol, branched, ethoxylated; sodium dioctyl sulfosuccinate; ethylene glycol monobutyl ether; propylene glycol monomethyl ether - alpha isomer)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	All chemical substances in this product have been designated as TSCA Inventory 'Active'
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	30/12/2024
Initial Date	30/12/2024

SDS Version Summary

Version	Date of Update	Sections Updated
2.1	30/12/2024	Composition / information on ingredients - Ingredients

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- PC STEL: Permissible Concentration-Short Term Exposure Limit
- ▶ IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit

Chemwatch: 7933-31 Page 18 of 18

Mod Podge Mega Glitter

Part Number: Version No: 2.1 Issue Date: 30/12/2024 Print Date: 30/12/2024

- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ▶ ES: Exposure Standard
- ▶ OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- ► TLV: Threshold Limit Value
- LOD: Limit Of Detection
- ▶ OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ▶ MARPOL: International Convention for the Prevention of Pollution from Ships
- ▶ IMSBC: International Maritime Solid Bulk Cargoes Code
- ▶ IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- EINECS: European INventory of Existing Commercial chemical Substances
 ELINCS: European List of Notified Chemical Substances
- ▶ NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- NZIoC: New Zealand Inventory of Chemicals
 PICCS: Philippine Inventory of Chemicals and Chemical Substances
 TSCA: Toxic Substances Control Act
- ► TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- ▶ NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.