

Pebeo Gilding Paints Jasco Pty Limited

Chemwatch: **5423-28** Version No: **4.1**

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: 10/03/2023
Print Date: 17/08/2024
L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Pebeo Gilding Paints
Chemical Name	Not Applicable
Synonyms	EN-FDS080 Gilding Paints
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Paints & Varnishes for artists.
	Use according to manufacturer's directions.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Jasco Pty Limited	
Address	1-5 Commercial Road Kingsgrove NSW 2208 Australia	
Telephone	+61 2 9807 1555	
Fax	Not Available	
Website	www.jasco.com.au	
Email	quickinfo@jasco.com.au	

Emergency telephone number

Association / Organisation	Australian Poisons Centre	CHEMWATCH EMERGENCY RESPONSE (24/7)
Emergency telephone numbers	13 11 26 (24/7)	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 3 9573 3188

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S5
Classification ^[1]	Flammable Liquids Category 3, Acute Toxicity (Oral) Category 2, Aspiration Hazard Category 1, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Germ Cell Mutagenicity Category 1A, Carcinogenicity Category 1A, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Chemwatch: **5423-28** Page **2** of **25**

Pebeo Gilding Paints

Issue Date: 10/03/2023 Print Date: 17/08/2024

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

Version No: 4.1

H226	Flammable liquid and vapour.
H300	Fatal if swallowed.
H304	May be fatal if swallowed and enters airways.
H317	May cause an allergic skin reaction.
H319	Causes serious eye irritation.
H336	May cause drowsiness or dizziness.
H340	May cause genetic defects.
H350	May cause cancer.
H373	May cause damage to organs through prolonged or repeated exposure.
H410	Very toxic to aquatic life with long lasting effects.
AUH066	Repeated exposure may cause skin dryness and cracking.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P260	Do not breathe mist/vapours/spray.
P264	Wash all exposed external body areas thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P240	Ground and bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use non-sparking tools.
P243	Take action to prevent static discharges.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.
Do NOT induce vomiting. If more than 15 mins from Doctor, INDUCE VOMITING (if conscious).
IF exposed or concerned: Get medical advice/ attention.
Rinse mouth.
In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.
IF ON SKIN: Wash with plenty of water and soap.
IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
If skin irritation or rash occurs: Get medical advice/attention.
If eye irritation persists: Get medical advice/attention.
Take off contaminated clothing and wash it before reuse.
Collect spillage.
IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].
IF INHALED: Remove person to fresh air and keep comfortable for breathing.

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Pebeo Gilding Paints

Issue Date: 10/03/2023 Print Date: 17/08/2024

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64742-48-9	25-<50	hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics
7440-50-8	10-<25	<u>copper</u>
64742-48-9.	10-<25	naphtha petroleum, heavy, hydrotreated
7440-66-6	2.5-<10	zinc powder
162627-17-0	<2.5	fatty acid dimers, C18-unsaturated, 1,3-propanediamides
Legend:	Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: ▶ Immediately remove all contaminated clothing, including footwear. ▶ Flush skin and hair with running water (and soap if available). ▶ Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For petroleum distillates

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- · After the initial episode,individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.

Chemwatch: 5423-28

Pebeo Gilding Paints

Page 4 of 25 Issue Date: 10/03/2023 Version No: 4.1 Print Date: 17/08/2024

- · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur.Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators

for copper intoxication:

- Unless extensive vomiting has occurred empty the stomach by lavage with water, milk, sodium bicarbonate solution or a 0.1% solution of potassium ferrocyanide (the resulting copper ferrocyanide is insoluble).
- Administer egg white and other demulcents.
- Maintain electrolyte and fluid balances.
- Morphine or meperidine (Demerol) may be necessary for control of pain.
- If symptoms persist or intensify (especially circulatory collapse or cerebral disturbances, try BAL intramuscularly or penicillamine in accordance with the supplier's recommendations.
- Treat shock vigorously with blood transfusions and perhaps vasopressor amines.
- If intravascular haemolysis becomes evident protect the kidneys by maintaining a diuresis with mannitol and perhaps by alkalinising the urine with sodium
- It is unlikely that methylene blue would be effective against the occassional methaemoglobinemia and it might exacerbate the subsequent haemolytic episode.
- Institute measures for impending renal and hepatic failure.

[GOSSELIN, SMITH & HODGE: Commercial Toxicology of Commercial Products]

- A role for activated charcoals for emesis is, as yet, unproven.
- In severe poisoning CaNa2EDTA has been proposed.

[ELLENHORN & BARCELOUX: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

▶ DO NOT use halogenated fire extinguishing agents.

Metal dust fires need to be smothered with sand, inert dry powders.

DO NOT USE WATER, CO2 or FOAM.

- Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- · Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.

Special hazards arising from the substrate or mixture

Fire Incompatibility

- Reacts with acids producing flammable / explosive hydrogen (H2) gas
- · Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may

lvice for firefighters

Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. 	
	▶ If safe to do so, remove containers from path of fire.	
Fire/Explosion Hazard	 Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) metal oxides other pyrolysis products typical of burning organic material. 	

SECTION 6 Accidental release measures

•3Y

HAZCHEM

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

Chemwatch: 5423-28

Pebeo Gilding Paints

Page 5 of 25 Issue Date: 10/03/2023 Version No. 4.1 Print Date: 17/08/2024

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Other information

Precautions for safe handling

- ▶ DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid generation of static electricity.
- DO NOT use plastic buckets.
 - Earth all lines and equipment.
 - Use spark-free tools when handling.
 - Avoid contact with incompatible materials.
 - When handling. DO NOT eat, drink or smoke.
 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
 - Store in original containers in approved flammable liquid storage area.
 - Store away from incompatible materials in a cool, dry, well-ventilated area.
 - ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
 - ▶ No smoking, naked lights, heat or ignition sources.
 - ▶ Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access.
 - ▶ Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
 - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
 - ▶ Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
 - Keep adsorbents for leaks and spills readily available.
 - ▶ Protect containers against physical damage and check regularly for leaks.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
- Storage tanks should be above ground and diked to hold entire contents.

Pebeo Gilding Paints

Issue Date: **10/03/2023**Print Date: **17/08/2024**

Conditions for safe storage, including any incompatibilities

► CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product ▶ Heavy gauge metal packages / Heavy gauge metal drums For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable Suitable container head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. Polyethylene or polypropylene container. ▶ Packing as recommended by manufacturer. ▶ Check all containers are clearly labelled and free from leaks. Avoid reaction with oxidising agents, bases and strong reducing agents. Storage incompatibility • Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	copper	Copper (fume)	0.2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	copper	Copper, dusts & mists (as Cu)	1 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	naphtha petroleum, heavy, hydrotreated	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
hydrocarbons, C9-11, n- alkanes, isoalkanes, cyclics, <2% aromatics	350 mg/m3	1,800 mg/m3	40,000 mg/m3
copper	3 mg/m3	33 mg/m3	200 mg/m3
naphtha petroleum, heavy, hydrotreated	350 mg/m3	1,800 mg/m3	40,000 mg/m3
zinc powder	6 mg/m3	21 mg/m3	120 mg/m3

Ingredient	Original IDLH	Revised IDLH
hydrocarbons, C9-11, n- alkanes, isoalkanes, cyclics, <2% aromatics	2,500 mg/m3	Not Available
copper	100 mg/m3	Not Available
naphtha petroleum, heavy, hydrotreated	2,500 mg/m3	Not Available
zinc powder	Not Available	Not Available
fatty acid dimers, C18- unsaturated, 1,3- propanediamides	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
zinc powder	E	≤ 0.01 mg/m³		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.			

Chemwatch: **5423-28** Page **7** of **25**

Pebeo Gilding Paints

Issue Date: 10/03/2023
Print Date: 17/08/2024

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
fatty acid dimers, C18- unsaturated, 1,3- propanediamides	Е	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

Version No: 4.1

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance.
- · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures.
- Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus)

Individual protection measures, such as personal protective equipment

Chemwatch: 5423-28 Page 8 of 25 Issue Date: 10/03/2023 Version No. 4.1 Print Date: 17/08/2024

Pebeo Gilding Paints

Safety glasses with side shields. ▶ Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should Eye and face protection include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. Skin protection See Hand protection below ▶ Wear chemical protective gloves, e.g. PVC. ▶ Wear safety footwear or safety gumboots, e.g. Rubber NOTE: ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: · frequency and duration of contact. · chemical resistance of glove material, · glove thickness and · dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes Hands/feet protection according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: · Excellent when breakthrough time > 480 min · Good when breakthrough time > 20 min Fair when breakthrough time < 20 min · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended See Other protection below **Body protection** Overalls. PVC Apron. PVC protective suit may be required if exposure severe. • Ensure there is ready access to a safety shower. ▶ Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may

Other protection

produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).

Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Pebeo Gilding Paints

Issue Date: 10/03/2023 Print Date: 17/08/2024

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Liquid; does not mix with water.		
Physical state	Liquid	Relative density (Water = 1)	1.10
Odour	Not Available	Partition coefficient n- octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	210	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	31	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	<110	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	617

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhale

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Chemwatch: 5423-28 Page 10 of 25 Issue Date: 10/03/2023
Version No: 4.1 Print Date: 17/08/2024

Pebeo Gilding Paints

Inhalation hazard is increased at higher temperatures.

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Some aliphatic hydrocarbons produce axonal neuropathies. Isoparaffinic hydrocarbons produce injury to the kidneys of male rats. When albino rats were exposed to isoparaffins at 21.4 mg/l for 4 hours, all animals experienced weakness, tremors, salivation, mild to moderate convulsions, chromodacryorrhoea and ataxia within the first 24 hours. Symptoms disappeared after 24 hours.

Several studies have evaluated sensory irritation in laboratory animals or odor or sensory response in humans. When evaluated by a standard procedure to assess upper airway irritation, isoparaffins did not produce sensory irritation in mice exposed to up to 400 ppm isoparaffin in air. Human volunteers were exposed for six hours to 100 ppm isoparaffin. The subjects were given a self-administered questionnaire to evaluate symptoms, which included dryness of the mucous membranes, loss of appetite, nausea, vomiting, diarrhea, fatigue, headache, dizziness, feeling of inebriation, visual disturbances, tremor, muscular weakness, impairment of coordination or paresthesia. No symptoms associated with solvent exposure were observed. With a human expert panel, odour from liquid imaging copier emissions became weakly discernible at approximately 50 ppm.

Numerous long-term exposures have been conducted in animals with only one major finding observed. Renal tubular damage has been found in kidneys of male rats upon repeated exposures to isoparaffins. It does not occur in mice or in female rats. This male rat nephropathy has been observed with a number of hydrocarbons, including wholly vaporized unleaded gasoline. The phenomenon has been attributed to reversible binding of hydrocarbon to alpha2-globulin. Since humans do not synthesize alpha2-globulin or a similar protein, the finding is not considered to be of biological significance to man. No clinically significant renal abnormalities have been found in refinery workers exposed to hydrocarbons.

When evaluated for developmental toxicity in rats, isoparaffins were neither embryotoxic nor teratogenic. Isoparaffins were consistently negative on standard bacterial genotoxicity assays. They were also non-genotoxic in *in vivo* mammalian testing for somatic or germ cell mutations (mouse micronucleus test and rat dominant lethal assay, respectively).

Mullin et al: Jnl Applied Toxicology 10, pp 136-142, 2006

Copper poisoning following exposure to copper dusts and fume may result in headache, cold sweat and weak pulse. Capillary, kidney, liver and brain damage are the longer term manifestations of such poisoning. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Ingestion

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

Many aliphatic hydrocarbons create a burning sensation because they are irritating to the GI mucosa. Vomiting has been reported in up to one third of all hydrocarbon exposures. While most aliphatic hydrocarbons have little GI absorption, aspiration frequently occurs, either initially or in a semi-delayed fashion as the patient coughs or vomits, thereby resulting in pulmonary effects. Once aspirated, the hydrocarbons can create a severe pneumonitis.

Rats given isoparaffinic hydrocarbons - isoalkanes- (after 18-24 hours fasting) showed lethargy and/or general weakness, ataxia and diarrhoea. Symptoms disappeared within 24-28 hours.

Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage.

Chemwatch: 5423-28 Page 11 of 25 Version No. 4.1

Pebeo Gilding Paints

Issue Date: 10/03/2023 Print Date: 17/08/2024

> Numerous cases of a single oral exposure to high levels of copper have been reported. Consumption of copper-contaminated drinking water has been associated with mainly gastrointestinal symptoms including nausea, abdominal pain, vomiting and diarrhoea. A metallic taste, nausea, vomiting and epigastric burning often occur after ingestion of copper and its derivatives. The vomitus is usually green/blue and discolours contaminated skin. Acute poisonings from the ingestion of copper salts are rare due to their prompt removal by vomiting. Vomiting is due mainly to the local and astringent action of copper ion on the stomach and bowel. Emesis usually occurs within 5 to 10 minutes but may be delayed if food is present in the stomach. Should vomiting not occur, or is delayed, gradual absorption from the bowel may result in systemic poisoning with death, possibly, following within several days. Apparent recovery may be followed by lethal relapse. Systemic effects of copper resemble other heavy metal poisonings and produce wide-spread capillary damage, kidney and liver damage and central nervous system excitation followed by depression. Haemolytic anaemia (a result of red-blood cell damage) has been described in acute human poisoning. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products.]

> Other symptoms of copper poisoning include lethargy, neurotoxicity, and increased blood pressure and respiratory rates. Coma and death have followed attempted suicides using solutions of copper sulfate. Copper is an essential element and most animal tissues have measurable amounts of copper associated with them. Humans have evolved mechanisms which maintain is availability whilst limiting its toxicity (homeostasis). Copper is initially bound in the body to a blood-borne protein, serum albumin and thereafter is more firmly bound to another protein, alpha-ceruloplasmin. Such binding effectively "inactivates" the copper, thus reducing its potential to produce toxic damage. In healthy individuals, bound copper can reach relatively high levels without producing adverse health effects. Excretion in the bile represents the major pathway by which copper is removed from the body when it reaches potentially toxic levels. Copper may also be stored in the liver and bone marrow where it is bound to another protein, metallothionein. A combination of binding and excretion ensures that the body is able to tolerate relatively high loadings

Accidental ingestion of the material may be damaging to the health of the individual.

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Dermally, isoparaffins have produced slight to moderate irritation in animals and humans under occluded patch conditions where evaporation cannot freely occur. However, they are not irritating in non-occluded tests, which are a more realistic simulation of human exposure. They have not been found to be sensitisers in guinea pig or human patch testing. However, occasional rare idiosyncratic sensitisation reactions in humans have been reported.

Irritation and skin reactions are possible with sensitive skin

Open cuts, abraded or irritated skin should not be exposed to this material

Exposure to copper, by skin, has come from its use in pigments, ointments, ornaments, jewellery, dental amalgams and IUDs and as an antifungal agent and an algicide. Although copper algicides are used in the treatment of water in swimming pools and reservoirs, there are no reports of toxicity from these applications. Reports of allergic contact dermatitis following contact with copper and its salts have appeared in the literature, however the exposure concentrations leading to any effect have been poorly characterised. In one study, patch testing of 1190 eczema patients found that only 13 (1.1%) cross-reacted with 2% copper sulfate in petrolatum. The investigators warned, however, that the possibility of contamination with nickel (an established contact allergen) might have been the cause of the reaction. Copper salts often produce an itching eczema in contact with skin. This is, likely, of a non-allergic nature.

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Instillation of isoparaffins into rabbit eyes produces only slight irritation.

Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

Copper salts, in contact with the eye, may produce conjunctivitis or even ulceration and turbidity of the cornea.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a

substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyperresponsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become

hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers

Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may

Skin Contact

Eve

Chronic

Pebeo Gilding Paints

Issue Date: 10/03/2023
Print Date: 17/08/2024

cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer.

There is sufficient evidence to provide a strong presumption that human exposure to the material may produce heritable genetic damage.

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in the development of heritable genetic damage, generally on the basis of

- appropriate animal studies,
- other relevant information

Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following subacute (28 day) or chronic (two-year) toxicity tests.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human.

For copper and its compounds (typically copper chloride):

Acute toxicity: There are no reliable acute oral toxicity results available. Animal testing shows that skin in exposure to copper may lead to hardness of the skin, scar formation, exudation and reddish changes. Inflammation, irritation and injury of the skin were noted.

Repeat dose toxicity: Animal testing shows that very high levels of copper monochloride may cause anaemia.

Genetic toxicity: Copper monochloride does not appear to cause mutations in vivo, although chromosomal aberrations were seen at very high concentrations in vitro.

Cancer-causing potential: There was insufficient information to evaluate the cancer-causing activity of copper monochloride.

Pebeo Gilding Paints	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
hydrocarbons, C9-11, n-	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
alkanes, isoalkanes, cyclics, <2% aromatics	Inhalation (Rat) LC50: >5.266 mg/L4h ^[1]	Skin: adverse effect observed (irritating) ^[1]
	Oral (Rat) LD50: >5000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
copper	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Inhalation (Rat) LC50: 0.733 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]

Page 13 of 25

Pebeo Gilding Paints

Issue Date: 10/03/2023 Print Date: 17/08/2024

	Oral (Mouse) LD50; 0.7 mg/kg ^[2]	
	TOXICITY	IRRITATION
naphtha petroleum, heavy,	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
hydrotreated	Inhalation (Rat) LC50: >4.42 mg/L4h ^[1]	Skin: adverse effect observed (irritating) ^[1]
	Oral (Rat) LD50: >4500 mg/kg ^[1]	
	TOXICITY	IRRITATION
zinc powder	Dermal (rabbit) LD50: 1130 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: >2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
fatty sold dimore C19	TOXICITY	IRRITATION
fatty acid dimers, C18- unsaturated, 1,3-	Oral (Rat) LD50: >10000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
propanediamides		Skin: no adverse effect observed (not irritating) ^[1]
Legend:	Value obtained from Europe ECHA Registered Sui	bstances - Acute toxicity 2. Value obtained from manufacturer's SDS.

HYDROCARBONS, C9-11, N-ALKANES, ISOALKANES, CYCLICS. <2% AROMATICS

Version No. 4.1

For alkanes:

Exposure to the commercial hexane (a representative of the ECHA group of hydrocarbons, C5-C7, n-alkanes, isoalkanes, nhexane rich) had no effect on the behavior of rats. Rats were tested monthly throughout the exposure for hindlimb splay and grip strength. The NOAEC for sub-chronic neurological effects is 9000 ppm in rats.

In a 13 week subchronic inhalation study, the neurotoxicity of light alkylate naphtha distillate (LAND-2; carbon range C5-C8) was examined in male and female rats and aside from acute CNS effects, no treatment related neurotoxic effects found in any of the treatment groups. The NOAEC was determined to be > 24.3 g/m3 (6646 ppm). Additionally, no neurological effects were reported in the NTP 2 year carcinogenicity study on Stoddard solvent.

For hydrocarbons, C5-C7, n-alkanes, isoalkanes, n-hexane rich

n-Hexane was metabolized and excreted within 168 h of iv bolus administration, inhalation exposure or dermal application. Exhaled breath and urine were the two primary routes for the excretion and its metabolites, n-Hexane was widely distributed to the body tissues but were not concentrated significantly by any of those tissues. It was extensively metabolized and a number of radio labeled metabolites were excreted in the urine. n-Hexane and its radio labeled metabolites disappeared from the blood of rats with a half-life of approximately 9-10 h.

Repeated inhalation exposure had no apparent effect on the rates or routes of excretion of either of the test compounds or their metabolites

The absorption rates into the skin, normalised for exposure concentration, was determined to be 0.013 cm/h The maximum absorption rate into the blood was determined to be 0.005 nmol/h. A comparison of the estimated whole-body skin uptake with the inhalatory uptake from the same atmosphere, revealed that the dermal uptake contributed 0.1% to the total uptake C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are absorbed, they are typically metabolized by side chain oxidation to alcohol and carboxylic acid derivatives. These metabolites can be glucuronidated and excreted in the urine or further metabolized before being excreted. The majority of the metabolites are excreted in the urine and to a lower extent, in the faeces. Excretion is rapid with the majority of the elimination occurring within the first 24 hours of exposure. As a result of the lack of systemic toxicity and the ability of the parent material to undergo metabolism and rapid excretion, bioaccumulation of the test substance in the tissues is not likely to occur.

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are poorly absorbed dermally with an estimated overall percutaneous absorption rate of approximately 2ug/cm2/hr or 1% of the total applied fluid. Regardless of exposure route, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are rapidly metabolized and eliminated has been fully evaluated. All of the animal studies were performed in a manner similar or equivalent to currently established OECD guidelines. Based on these data, C9-C14 aliphatic, <2% aromatic hydrocarbons have a low order of acute toxicity by the oral, dermal, and inhalation routes of exposure. In a study examining the oral toxicity of commercial hexane. 6 male rats were given doses of up to 25 ml/kg of test substance by oral gavage. The animals were then observed for 14 days for mortality. No mortality was observed at any of the doses. The oral LD50 is therefore > 25 ml/kg (16.75 g/kg; density of 0.67).

C9-C14 aliphatic, <2% aromatic hydrocarbons is minimally toxic via ingestion where the LD50 is >5000 mg/kg, via dermal exposure where the LD50 is >5000 mg/kg, and by inhalation where the LC50 > 5000 mg/m3. These findings do not warrant classification of C9-C14 aliphatic, <2% aromatic hydrocarbons under the Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP) do not warrant classification under the Directive 67/548/EEC for dangerous substances and Directive 1999/45/EC for preparations (DSD/DPD). C9-C14 aliphatic, <2% aromatic hydrocarbons are classified under EU CLP guidelines as a Category 1 aspiration hazard based on its physical and chemical properties (hydrocarbon fluid. viscosity = 20.5 mm2/s) and as an R65 aspiration hazard under the EU DSD/DPD.

One study examined that acute inhalation toxicity of hexane to male rats. Groups of 10 male rats exposed to various large concentrations of hexane vapour for 4 hrs. Animals were then observed for clinical signs and mortality for at least the next 6 days. Several animals died during the exposure period. The LC50 was determined to be 73,680 ppm (259354 mg/m3). Due to the high concentration of the LC50, the test substance would not be classified as toxic by inhalation according to OECD GHS guidelines. Surviving animals experienced severe toxicological effects during the exposure.

For isoparaffinic, normal paraffinic, and mixed C9-C14 aliphatic, <2% aromatic hydrocarbon fluids, the weight of evidence indicates that the erythema and oedema scores (24, 48, and 72 average) are below the classification threshold requirements: 2.0, Directive 67/548/EEC for dangerous substances and Directive 1999/45/EC for preparation; 2.3, the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP).

Chemwatch: **5423-28**Page **14** of **25**Version No: **4.1**

Pebeo Gilding Paints

Issue Date: 10/03/2023
Print Date: 17/08/2024

For cycloparaffinic C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids, erythema and oedema scores (24, 48, and 72 average) are above the classification threshold requirements: 2.0, Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC for preparation; 2.3, the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP). This finding warrants classification of the test material as a skin irritant (R38) under Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC for preparations. This finding warrants classification of the test material as a Category 2 dermal irritant under the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP).

Eye irritation

Ocular lesion scores (24, 48, and 72 average) are below the classification threshold requirements.

Drective 67/548/EEC for dangerous substances and Directive 1999/45/EC for preparation: 0, cornea opacity; 0, iris lesion; >2.5, redness of the conjunctivae; >2.0, oedema of the conjunctivae (chemosis). Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP): 0, cornea opacity; 0, iris lesion; >2.0, redness of the conjunctivae; >2.0, oedema of the conjunctivae (chemosis).

Respiratory irritation

There are no studies that warrant classification as a respiratory irritant under either the Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC or under the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP).

Sensitisation:

A study was performed to determine the concentration of hexane that would be expected to cause sensitization in humans. Results of previous LLNA experiments were used to calculate the EC3 value, the concentration at which the test substance would produce a 3-fold increase in the proliferative activity of lymph nodes in the LLNA test. The 3-fold increase is considered a positive response for sensitization in the LLNA test. The EC3 value for hexane was determined to be > 100% concentration. The test substance is therefore not sensitizing.

There are no reports of respiratory sensitization from C9-C14 aliphatic, <2% aromatic hydrocarbons fluids in laboratory animals or humans. However, skin sensitization studies utilizing C9-C14 aliphatic, <2% aromatic hydrocarbons fluids found no indication of skin sensitization in guinea pigs. Additional studies in humans also found no indication of skin sensitization. With these observations, it is presumed that C9-C14 aliphatic, <2% aromatic hydrocarbons fluids will not be a respiratory sensitizing agent. Repeat dose toxicity,

In a study involving n-hexane, neurological effects were only seen at the highest dose level after an average of 101.3 days of exposure. The LOAEL for neurological effects is 46.2 mmol/kg bw (37973 mg/kg), and the NOAEL is 13.2 mmol/kg bw (1135 mg/kg). Reduced body weight gain was seen at all three dose levels, however was only considered treatment related in the 13.2 and 46.2 mmol/kg bw groups. The NOAEL is therefore 6.60 mmol/kg bw.

In a study involving n-hexane The NOAEC for male rats exposed via inhalation was 2984 ppm based on liver and kidney effects. The LOAEC for male rats was 8992 ppm. The NOAEC for female rats was 8992 ppm

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are expected to have a low order of repeated dose toxicity by the oral route of exposure. All tests were performed in a manner similar or equivalent to currently established OECD guidelines. In a repeated dose study where C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were administered via oral gavage, no signs of toxicity were observed at the maximum experimental dose tested, 5000 mg/kg/day.

In a repeated dose study where C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were administered via inhalation, no signs of toxicity were observed at 10400 mg/m3. Based on these observations, the repeat inhalation concentration NOAEL is =10400 mg/m3 (10.4 mg/L) for C9-C14 aliphatic, <2% aromatic hydrocarbon fluid Genetic toxicity:

A study examined the in vitro mutagenicity of vapours of the test substance commercial hexane. Plates of S. typhimurium were exposed for 7 -8 hrs to test atmospheres of 0, 600, 1000, 3000, 6000, or 9000 ppm of test substance. The test substance did not produce a positive response in any of the test strains. The test substance is not mutagenic.

In a study to determine the in vivo effect of inhalation exposure of commercial hexane on rat bone marrow. Groups of 5 male and 5 female rats were exposed to 0, 900, 3000, and 9000 ppm of test substance vapour for 6 hrs/day for 5 days. There was no statistically significant increase in cell aberrations in any treatment group. The test substance is not mutagenic.

C9-C14 aliphatic, <2% aromatic hydrocarbons fluids are not mutagenic using in vitro or in vivo genotoxicity assays. In bacterial tests, C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were not mutagenic in Salmonella strains tested in the presence or absence of metabolic activation. C9 -C14 aliphatic, <2% aromatic hydrocarbon fluids were negative in a in vitro mammalian cell gene mutation assay. In sister chromatid exchange and in chromosomal aberration studies, C9-C14 aliphatic, <2% aromatic hydrocarbons fluids did not produce an effect. C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were also non-mutagenic when tested in an in vivo mouse bone marrow micronucleus assay and when tested in dominant lethal studies utilizing an inhalation route of exposure. All studies were conducted in a manner similar or equivalent to currently established OECD guidelines. C9-C14 aliphatic, <2% aromatic hydrocarbons fluids are a non-genotoxic agent and classification is not warranted under the Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP) or under the Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC for preparations.

In a study examining the effects of commercial hexane the NOAEC for both male and female rats (adults and offspring) was 3000 ppm (10560 mg/m3). The LOAEC for these groups was 9000 ppm based on reduced body weight. There were no adverse effects to reproduction, therefore the NOAEC for reproduction is 9000 ppm (31680 mg/m3).

A study to examine the developmental toxicity of commercial hexane in mice, found the maternal NOAEC was 900 ppm, and the maternal LOAEC was 3000 ppm (10560 mg/m3) based on colour changes in the lungs. The developmental NOAEC was 3000 ppm and the LOAEC was 9000 ppm(31680 mg/m3) in mice.

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are not developmental toxicants. In two developmental studies (OECD TG 414), pregnant dams were dosed by inhalation with 0, 300, or 900 ppm C9-C14 aliphatic, <2% aromatic hydrocarbon fluids during gestational days 6 through 15. No adverse maternal or fetal effects were noted at any dose level. Thus, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids did not produce any maternal or fetal toxicity or any developmental effects in rats. Based on the study results, the maternal and developmental toxicity NOAEC is >= 900 ppm (5220 mg/m3). Based on this study and the lack of systemic toxicity, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids, are not expected to be developmental toxicants. For high molecular weight aliphatic hydrocarbons:

Acute toxicity:

Four studies were available for acute oral toxicity, dealing with the toxicity of C5-C20 normal paraffins, C14-C17 n-alkanes, C14-C16 paraffins and isohexadecane. All studies were conducted similarly to OECD guideline 401 without GLP compliance. All studies show no mortality at concentrations up to 5000 mg/kg bw.

Chemwatch: 5423-28 Page 15 of 25 Issue Date: 10/03/2023
Version No: 4.1 Print Date: 17/08/2024

Pebeo Gilding Paints

Three studies were available for acute dermal toxicity, dealing with the toxicity of C5-C20 normal paraffins, C14-C17 n-alkanes and C14-C16 paraffins. All studies were conducted similarly to OECD guideline 402 without GLP compliance. All studies show no mortality at concentrations equal to or higher than 2000 mg/kg bw.

A reliable study and a non-reliable study were available for acute inhalation, dealing with the toxicity of hydrocarbons, C10-C12, isoalkanes, < 2% aromatics and C14-C16 n-paraffins, respectively. All studies were conducted similarly to OECD guideline 403. They all show no mortality at concentrations equal to or higher than 5000 mg/m3.

Sensitisation

C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids were determined not to be skin sensitizers using Magnusson and Kligman Guinea-Pig Maximization tests (OECD TG 406). C9-C14 aliphatic, <2% aromatic hydrocarbons fluids were determined not to be skin sensitizers in Human Repeated Insult Patch Tests (HRIPT)

C10-12 isoalkanes (<2% aromatics), C11-C14 n-alkanes (<2% aromatics) and C10-C13 (<2% aromatics) were not dermal sensitizers using a Magnusson and Kligman Guinea-Pig Maximization test (OECD TG 406).

However, skin sensitization studies utilizing C9-14 aliphatics (<2 % aromatics) found no indication of skin sensitization in guinea pigs. Additional studies on C14-C20 aliphatics (<2% aromatics) in humans also found no indication of skin sensitization.

There are no reports of respiratory sensitization from C14-20 aliphatics (<2 % aromatics) in laboratory animals or humans.

Reneat dose toxicity:

Oral: C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids are expected to have a low order of repeated dose toxicity by the oral route of exposure. All tests were performed in a manner similar or equivalent to currently established OECD guidelines. In a repeated dose study where C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered via oral gavage, no signs of toxicity were observed at the maximum experimental dose tested, 5000 mg/kg/day.

Inhalation: In a repeated dose study where C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered via inhalation, no signs of toxicity were observed at 10400 mg/m3. Based on these observations, the repeat inhalation concentration NOAEL is >=10400 mg/m3 (10.4 mg/L) for C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids.

Two read-across studies from the structurally analogous test materials "hydrocarbons C12-C16, n-alkanes, isoalkanes, cyclics, <2% aromatics" and "hydrocarbons, C10 -C13, n-alkanes, isoalkanes, cyclics, < 2% aromatics" were analysed. All tests were performed in a manner similar or equivalent to currently established OECD guidelines. The systemic NOAEL were determined to be higher than 1000 and 5000 mg/kg/day, respectively.

Inhalation: a repeated inhalation toxicity study was performed with "Hydrocarbons, C10 – C12, isoalkanes, < 2% aromatics" similarly to OECD guideline 413. Albino rats were exposed for 6 hours/day, 5 days/week for 13 weeks at nominal vapour concentrations of 10400 mg/m3, 5200 mg/m3, and 2600 mg/m3 to assess inhalation toxicity. As there were no pathologic changes, changes in organ weights were judged to have been compensatory rather than toxic effects. Based on these results, the No Observed Adverse Effect Concentration (NOAEC) was greater than or equal to 10400 mg/m3.

Oral: C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids are expected to have a low order of repeated dose toxicity by the oral route of exposure. All tests were performed in a manner similar or equivalent to currently established OECD guidelines. In a repeated dose study where C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered via oral gavage, no signs of toxicity were observed at the maximum experimental dose tested, 5000 mg/kg/day.

Inhalation: In a repeated dose study where C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered via inhalation, no signs of toxicity were observed at 10400 mg/m3. Based on these observations, the repeat inhalation concentration NOAEL is >=10400 mg/m3 (10.4 mg/L) for C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids.

Genetic toxicity:

C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids are not mutagenic using in vitro or in vivo genotoxicity assays. In bacterial tests, C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids were not mutagenic in Salmonella strains tested in the presence or absence of metabolic activation. C9 -C14 aliphatic, < 2% aromatic hydrocarbon fluids were negative in a in vitro mammalian cell gene mutation assay. In sister chromatid exchange and in chromosomal aberration studies, C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids did not produce an effect. C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids were also non-mutagenic when tested in an in vivo mouse bone marrow micronucleus assay and when tested in dominant lethal studies utilizing an inhalation route of exposure. All studies were conducted in a manner similar or equivalent to currently established OECD guidelines. C9-C14 aliphatic, < 2% aromatic hydrocarbons fluids are a non-genotoxic agent and classification is not warranted under the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP) or under the Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC for preparations.

All Ames tests on "hydrocarbons, C14-C20, n-alkanes, isoalkanes, cyclics,<2% aromatics" showed no mutagenic effect with and without metabolic activation. The chromosome aberration study in CHO cells on "hydrocarbons, C12-C16, n-alkanes, isoalkanes, cyclics,<2% aromatics" also showed no signs of mutagenicity. A mouse lymphoma forward mutation assay performed with hydrodesulfurised kerosene also showed no mutagenic properties.

The weight of evidence is derived from study records reported for the C9-C14 aliphatic, <2% aromatics. C9-C14 aliphatic, <2% aromatics are not genotoxic and are not classifiable as mutagens based upon the results of reliable in vitro and in vivo studies. In bacterial reverse mutation studies, the C9-C14 aliphatic, <2% aromatics were not mutagenic in the presence or absence of metabolic activation (IUCLID section 7.6.1). In mammalian cells in vitro, and in rats in vivo there were no mutagenic, clastenogenic or aneugenic effects reported in read-across from studies on C9-C14 aliphatic, <2% aromatics: a negative chromosome aberration (Human Peripheral Lymphocyte Chromosomal Aberration Test, Chinese Hamster Ovary Sister Chromatid Exchange Assay); and an in vivo inhalation exposure bone marrow chromosomal aberration study and micronucleus test (IUCLID sections 7.6.1 and 7.6.2).

Endpoint Conclusion: No adverse effect observed (negative)

Toxicity to reproduction:

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were examined for reproductive toxicity in a 28 day combined repeated dose toxicity study with the reproduction / developmental toxicity screening test (OECD TG 422). C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were administered oral gavage at a dose of 0, 25, 150, or 1000 mg/kg/day to groups of Sprague-Dawley rats. It was concluded that C9-C14 aliphatic, <2% aromatic hydrocarbon fluids did not induce reproductive toxicity in the parental animals and no effects on the endocrine system were observed. Therefore, the NOAEL was determined to be >=1000 mg/kg bw/day.

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were examined in a reproduction / developmental toxicity screening test (OECD TG 421). C9-C14 aliphatic, <2% aromatic hydrocarbon fluids were administered by oral gavage at a dose of 0 (vehicle), 100, 300, 1000 mg/kg/day to groups of Sprague-Dawley rats. It was concluded that C9-C14 aliphatic, <2% aromatic hydrocarbon fluids did not induce reproductive toxicity in the parental animals and no effects on the endocrine system were observed. Therefore, the NOAEL was determined to be >=1000 mg/kg bw/day.

Based on this study and the lack of systemic toxicity, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids, are not expected to be reproductive toxicants.

Chemwatch: 5423-28 Page 16 of 25 Issue Date: 10/03/2023
Version No: 4.1 Print Date: 17/08/2024

Pebeo Gilding Paints

In bacterial reverse mutation studies, the C14-C20 aliphatic, <2% aromatics were not mutagenic in the presence or absence of metabolic activation (IUCLID section 7.6.1). In mammalian cells in vitro, and in rats in vivo there were no mutagenic, clastogenic or aneugenic effects reported in read-across from studies on hydrodesulfurized kerosene kerosene, and jet fuels that included: a negative chromosome aberration (Human Peripheral Lymphocyte Chromosomal Aberration Test, Chinese Hamster Ovary Sister Chromatid Exchange Assay); and an in vivo inhalation exposure bone marrow chromosomal aberration study and micronucleus test in rats and mice (IUCLID sections 7.6.1 and 7.6.2).

C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were examined for reproductive toxicity in a 28 day combined repeated dose toxicity study with the reproduction / developmental toxicity screening test (OECD TG 422). C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids were administered oral gavage at a dose of 0, 25, 150, or 1000 mg/kg/day to groups of Sprague-Dawley rats. It was concluded that C9-C14 aliphatic, < 2% aromatic hydrocarbon fluids did not induce reproductive toxicity in the parental animals and no effects on the endocrine system were observed. Therefore, the NOAEL was determined to be >=1000 mg/kg bw/day.

Exposure in humans:

Seven studies were available on the irritation and/or sensitisation potential of several types of hydrocarbon solvents in volunteers. Clinical tests were conducted with populations ranging from 29 to 112 patients. None of the test substances elicited any sensitisation and/or irritation effects except C5-C20 paraffin, which showed a cumulative irritation effect at 75%. However, this substance was tested under occlusive patch, a condition which exacerbates the irritancy of hydrocarbon solvents.

Toxicokinetics:

If C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are absorbed, they are typically metabolized by side chain oxidation to alcohol and carboxylic acid derivatives. These metabolites can be glucuronidated and excreted in the urine or further metabolized before being excreted. The majority of the metabolites are excreted in the urine and to a lower extent, in the faeces. Excretion is rapid with the majority of the elimination occurring within the first 24 hours of exposure. As a result of the lack of systemic toxicity and the ability of the parent material to undergo metabolism and rapid excretion, bioaccumulation of the test substance in the tissues is not likely to occur.

C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are poorly absorbed dermally with an estimated overall percutaneous absorption rate of approximately 2ug/cm2/hr or 1% of the total applied fluid. Regardless of exposure route, C9-C14 aliphatic, <2% aromatic hydrocarbon fluids are rapidly metabolized and eliminated.

C14-C20 aliphatic, <2% aromatic hydrocarbon fluids are typically metabolized by side chain oxidation to alcohol and carboxylic acid derivatives. These metabolites can be glucuronidated and excreted in the urine or further metabolized before being excreted. The majority of the metabolites are excreted in the urine and to a lower extent, in the faeces. Excretion is rapid with the majority of the elimination occurring within the first 24 hours of exposure. As a result of the lack of systemic toxicity and the ability of the parent material to undergo metabolism and rapid excretion, bioaccumulation of the test substance in the tissues is not likely to occur.

Short description of key information on absorption rate:

C14-C20 aliphatic, <2% aromatic hydrocarbon fluids can be dermally absorbed, although they tend to partition into the stratum corneum. When dermally absorbed, C14-C20 aliphatic, <2% aromatic hydrocarbon fluids are rapidly metabolized and eliminated. Approximately 34% of C14-C20 aliphatic, <2% aromatic hydrocarbon fluids are absorbed when ingested. C14-C20 aliphatic, <2% aromatic hydrocarbon fluids is poorly dermally absorbed. Absorption following inhalation is assumed to be similar to ingestion since exposures will be to aerosol. Regardless of exposure route, C14-C20 aliphatic, <2% aromatic hydrocarbon fluids are rapidly metabolized. Bioaccumulation of C14-C20 aliphatic, <2% aromatic hydrocarbon fluids is not expected. C14-C20 aliphatic, <2% aromatic hydrocarbon fluids are absorbed if ingested. C14-C20 aliphatic, <2% aromatic hydrocarbon fluids undergo metabolism and rapid excretion and low deposition, bioaccumulation of the test substance in the tissues is not likely to occur.

The fate of pristane (2,6,10,14-tetramethylpentadecane) was studied in rats after a single per os administration of 3H-labeled pristane. The balance study showed extensive fecal excretion (66%) mainly as unchanged hydrocarbon, whereas about 14% of ingested pristane was excreted in urine as pristane metabolites and tritiated water. After one week, 8.3% of the ingested 3H still was stored in the carcass and the radioactive distribution in tissues and organs showed a preferential incorporation into adipose tissue and liver. Over 75% of the radioactivity stored in the carcass was associated with pristane metabolites and tritiated water. Tissue metabolites were characterized by thin layer chromatography, gas chromatography, and mass spectrometric analyses. Four metabolites were identified: pristan-1-ol, pristane-2-ol, pristanic acid and 4,8,12-trimethyltridecanoic acid. These results demonstrated that pristane undergoes subterminal hydroxylation or terminal oxidation followed by the classical beta-oxidation process.

Labeled paraffins with 8-18 C atoms prepared from unsaturated hydrocarbons by addition of deuterium have been added in oily solution to normal rats food. After six days an increase of deuterium content in the body fluid of all the rats was observed indicating that the labeled compounds had been metabolized. Deuterium was found in the fatty acids of the body fats and the liver lipids especially after feeding octadecane and hexadecane. Isolating oleic, stearic, and palmitic acids containing deuterium, indicated that methyl- and beta-oxidation of these hydrocarbons has occurred. Fatty acids resulting from the metabolism of hydrocarbons with shorter chains were not deposited but in these cases the urine contained fatty acids with higher deuterium content than after administration of octadecane and hexadecane. According to the deuterium content of the neutral fractions from the liver and body lipids all the hydrocarbons tested were deposited only to a small extent, the largest depots occurring mainly after feeding with octadecane and hexadecane.

Discussion on absorption rate:

There have not been any in vivo dermal absorption studies of C14 – C20 aliphatic, <2% aromatic hydrocarbon fluids, but there have been in vitro studies of similar constituents, particularly hexadecane.

The percutaneous absorption and cutaneous disposition of topically applied neat Jet-A, JP-8, and JP-8(100) jet fuels (25 μL/5 cm2) was examined by monitoring the absorptive flux of the marker components 14C naphthalene and 4H dodecane simultaneously applied non-occluded to isolated perfused porcine skin flaps (a = 4). Absorption of 14C hexadecane was estimated from JP-8 fuel. Absorption and disposition of naphthalene and dodecane were also monitored using a nonvolatile JP-8 fraction reflecting exposure to residual fuel that might occur 24 h after a jet fuel spill. In all studies, perfusate, stratum corneum, and skin concentrations were measured over 5 h. Naphthalene absorption had a clear peak absorptive flux at less than 1 h, while dodecane and hexadecane had prolonged, albeit significantly lower, absorption flux profiles. Within JP-8, absorption was (mean +/- SEM; % dose) hexadecane (0.18 +/- 0.08). The area under the curve (AUC) was determined to be (mean +/- SEM; % dose-h/mL): hexadecane (0.0017 +/- 0.0003).

The flux, permeability coefficient (Kp), and binding of hexadecane for porcine skin was determined to be 8.80 +/- 0.00 (nmol/cm2/h) x 10E-3. The permeability coefficient (Kp), and binding of hexadecane for human skin were determined to be 7.02 +/- 0.00 (nmol/cm2/h) x 10E-3. Factor of difference (FOD) in the permeability of pig and human skin was 1.28 for hexadecane. The FOD in binding of hexadecane to pig and human skin was found to be 0.76.

Chemwatch: 5423-28 Page 17 of 25 Issue Date: 10/03/2023
Version No: 4.1 Print Date: 17/08/2024

Pebeo Gilding Paints

Over view of percutaneous absorption of hydrocarbon solvents

There are no studies of repeated dose toxicity of hydrocarbon solvents using the dermal route of administration. Accordingly, where it is necessary to calculate dermal DNELs, systemic data from studies utilizing other routes of administration, normally inhalation but also oral data, can be used in some situations. In accordance with ECHA guidance, read across from oral or inhalation data to dermal should account for differences in absorption where these exist. In fact, hydrocarbon solvents are poorly absorbed in most situations, in part because some are volatile and do not remain in contact with the skin for long periods of time and also because, due to their hydrophobic natures, do not partition well into aqueous environments and are poorly absorbed into the blood

If these differences in relative absorption are introduced into the DNEL calculations to calculate external doses, the DNELs based on systemic effects are highly inflated. This seems potentially misleading as it implies that substances have different intrinsic hazards when encountered by different routes whereas in fact the differences are due ultimately to differences in absorbed dose

Several authors have assessed the percutaneous absorption of higher molecular weight aliphatic constituents. Using porcine skin models the percutaneous absorption values for aliphatic constituents ranging from nonane to tetradecane were well below 1 µg/cm2/hr. Rat and human skin are considered to be more permeable than human skin (so these numbers can be considered conservative

Results of percutaneous absorption studies with human skin under in vivo conditions produced values ranging from $1-2 \mu g/kg/day$ for decane, undecane and dodecane.

With respect to aromatic hydrocarbons, most of the reported percutaneous absorption values) are less than 2 µg/cm2/day. After considering all of the above, it seems reasonable to assume apparent that across the entire range of hydrocarbon solvent constituents, percutaneous absorption values are less than 2 µg/cm2/day. Accordingly, when systemic dermal DNELs are calculated using route to route extrapolations, the values will not be corrected for differences in absorption. Rather, 2 µg/cm2/hr should be used as a common percutaneous absorption rate for all hydrocarbon solvents for which dermal exposure estimates are provided.

WARNING: Inhalation of high concentrations of copper fume may cause "metal fume fever", an acute industrial disease of short duration. Symptoms are tiredness, influenza like respiratory tract irritation with fever.

for copper and its compounds (typically copper chloride):

Acute toxicity: There are no reliable acute oral toxicity results available. In an acute dermal toxicity study (OECD TG 402), one group of 5 male rats and 5 groups of 5 female rats received doses of 1000, 1500 and 2000 mg/kg bw via dermal application for 24 hours. The LD50 values of copper monochloride were 2,000 mg/kg bw or greater for male (no deaths observed) and 1,224 mg/kg bw for female. Four females died at both 1500 and 2000 mg/kg bw, and one at 1,000 mg/kg bw. Symptom of the hardness of skin, an exudation of hardness site, the formation of scar and reddish changes were observed on application sites in all treated animals. Skin inflammation and injury were also noted. In addition, a reddish or black urine was observed in females at 2,000, 1,500 and 1,000 mg/kg bw. Female rats appeared to be more sensitive than male based on mortality and clinical signs. No reliable skin/eye irritation studies were available. The acute dermal study with copper monochloride suggests that it has a potential to cause skin irritation.

Repeat dose toxicity: In repeated dose toxicity study performed according to OECD TG 422, copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39 - 51 days to females at concentrations of 0, 1.3, 5.0, 20, and 80 mg/kg bw/day. The NOAEL value was 5 and 1.3 mg/kg bw/day for male and female rats, respectively. No deaths were observed in male rats. One treatment-related death was observed in female rats in the high dose group. Erythropoietic toxicity (anaemia) was seen in both sexes at the 80 mg/kg bw/day. The frequency of squamous cell hyperplasia of the forestomach was increased in a dose-dependent manner in male and female rats at all treatment groups, and was statistically significant in males at doses of =20 mg/kg bw/day and in females at doses of =5 mg/kg bw/day doses. The observed effects are considered to be local, non-systemic effect on the forestomach which result from oral (gavage) administration of copper monochloride.

Genotoxicity: An in vitro genotoxicity study with copper monochloride showed negative results in a bacterial reverse mutation test with Salmonella typhimurium strains (TA 98, TA 100, TA 1535, and TA 1537) with and without S9 mix at concentrations of up to 1,000 ug/plate. An in vitro test for chromosome aberration in Chinese hamster lung (CHL) cells showed that copper monochloride induced structural and numerical aberrations at the concentration of 50, 70 and 100 ug/mL without S9 mix. In the presence of the metabolic activation system, significant increases of structural aberrations were observed at 50 and 70 ug/mL and significant increases of numerical aberrations were observed at 70 ug/mL. In an in vivo mammalian erythrocyte micronucleus assay, all animals dosed (15 - 60 mg/kg bw) with copper monochloride exhibited similar PCE/(PCE+NCE) ratios and MNPCE frequencies compared to those of the negative control animals. Therefore copper monochloride is not an in vivo

Carcinogenicity: there was insufficient information to evaluate the carcinogenic activity of copper monochloride. Reproductive and developmental toxicity: In the combined repeated dose toxicity study with the reproduction/developmental toxicity screening test (OECD TG 422), copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39-51 days to females at concentrations of 0, 1.3, 5.0, 20, and 80 mg/kg bw/day. The NOAEL of copper monochloride for fertility toxicity was 80 mg/kg bw/day for the parental animals. No treatment-related effects were observed on the reproductive organs and the fertility parameters assessed. For developmental toxicity the NOAEL was 20 mg/kg bw/day. Three of 120 pups appeared to have icterus at birth; 4 of 120 pups appeared runted at the highest dose tested (80 mg/kg bw/day).

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation.

Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants). Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus.

Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

COPPER

NAPHTHA PETROLEUM, HEAVY, HYDROTREATED

 Chemwatch: 5423-28
 Page 18 of 25
 Issue Date: 10/03/2023

 Version No: 4.1
 Print Date: 17/08/2024

Pebeo Gilding Paints

ZINC POWDER

Inhalation (human) TCLo: 124 mg/m3/50min. Skin (human):0.3mg/3DaysInt. mild

FATTY ACID DIMERS, C18-UNSATURATED, 1,3-PROPANEDIAMIDES

Fatty acid amides (FAA) are ubiquitous in household and commercial environments. The most common of these are based on coconut oil fatty acids alkanolamides. These are the most widely studied in terms of human exposure.

Fatty acid diethanolamides (C8-C18) are classified by Comite Europeen des Agents de Surface et de leurs Intermediaires Organiques (CESIO) as Irritating (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). Fatty acid monoethanolamides are classified as Irritant (Xi) with the risk phrases R41

Several studies of the sensitization potential of cocoamide diethanolamide (DEA) indicate that this FAA induces occupational allergic contact dermatitis and a number of reports on skin allergy patch testing of cocoamide DEA have been published. These tests indicate that allergy to cocoamide DEA is becoming more common.

Alkanolamides are manufactured by condensation of diethanolamine and the methylester of long chain fatty acids. Several alkanolamides (especially secondary alkanolamides) are susceptible to nitrosamine formation which constitutes a potential health problem. Nitrosamine contamination is possible either from pre-existing contamination of the diethanolamine used to manufacture cocoamide DEA, or from nitrosamine formation by nitrosating agents in formulations containing cocoamide DEA. According to the Cosmetic Directive (2000) cocoamide DEA must not be used in products with nitrosating agents because of the risk of formation of N-nitrosamines. The maximum content allowed in cosmetics is 5% fatty acid dialkanolamides, and the maximum content of N-nitrosodialkanolamines is 50 mg/kg. The preservative 2-bromo-2-nitropropane-1,3-diol is a known nitrosating agent for secondary and tertiary amines or amides. Model assays have indicated that 2-bromo-2-nitropropane-1,3-diol may lead to the N-nitrosation of diethanolamine forming the carcinogenic compound, N-nitrosodiethanolamine which is a potent liver carcinogen in rats (IARC 1978).

Several FAAs have been tested in short-term genotoxicity assays. No indication of any potential to cause genetic damage was seen Lauramide DEA was tested in mutagenicity assays and did not show mutagenic activity in *Salmonella typhimurium* strains or in hamster embryo cells. Cocoamide DEA was not mutagenic in strains of *Salmonella typhimurium* when tested with or without metabolic activation

Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Miljoministeriet (Danish Environmental Protection Agency)

For Fatty Nitrogen Derived (FND) Amides (including several high molecular weight alkyl amino acid amides)
The chemicals in the Fatty Nitrogen Derived (FND) Amides of surfactants are similar to the class in general as to
physical/chemical properties, environmental fate and toxicity. Human exposure to these chemicals is substantially documented.
The Fatty nitrogen-derived amides (FND amides) comprise four categories:

Subcategory I: Substituted Amides

Subcategory II: Fatty Acid Reaction Products with Amino Compounds (Note: Subcategory II chemicals, in many cases, contain Subcategory I chemicals as major components)

Subcategory III: Imidazole Derivatives

Subcategory IV: FND Amphoterics

Acute Toxicity: The low acute oral toxicity of the FND Amides is well established across all Subcategories by the available data. The limited acute toxicity of these chemicals is also confirmed by four acute dermal and two acute inhalation studies. Repeated Dose and Reproductive Toxicity: Two subchronic toxicity studies demonstrating low toxicity are available for Subcategory I chemicals. In addition, a 5-day repeated dose study for a third chemical confirmed the minimal toxicity of these chemicals. Since the Subcategory I chemicals are major components of many Subcategory II chemicals, and based on the low repeat-dose toxicity of the amino compounds (e.g. diethanolamine, triethanolamine) used for producing the Subcategory II

Two subchronic toxicity studies in Subcategory III confirmed the low order of repeat dose toxicity for the FND Amides Imidazole derivatives. For Subcategory IV, two subchronic toxicity studies for one of the chemicals indicated a low order of repeat-dose toxicity for the FND amphoteric salts similar to that seen in the other categories.

derivatives, the Subcategory I repeat-dose toxicity studies adequately support Subcategory II.

Genetic Toxicity in vitro: Based on the lack of effect of one or more chemicals in each subcategory, adequate data for mutagenic activity as measured by the Salmonella reverse mutation assay exist for all of the subcategories.

Developmental Toxicity: A developmental toxicity study in Subcategory I and in Subcategory IV and a third study for a chemical in Subcategory III are available. The studies indicate these chemicals are not developmental toxicants, as expected based on their structures, molecular weights, physical properties and knowledge of similar chemicals. As above for repeat-dose toxicity, the data for Subcategory I are adequate to support Subcategory II.

In evaluating potential toxicity of the FND Amides chemicals, it is also useful to review the available data for the related FND Cationic and FND Amines Category chemicals. Acute oral toxicity studies (approximately 80 studies for 40 chemicals in the three categories) provide LD50 values from approximately 400 to 10,000 mg/kg with no apparent organ specific toxicity. Similarly, repeated dose toxicity studies (approximately 35 studies for 15 chemicals) provide NOAELs between 10 and 100 mg/kg/day for rats and slightly lower for dogs. More than 60 genetic toxicity studies (in vitro bacterial and mammalian cells as well as in vivo studies) indicated no mutagenic activity among more than 30 chemicals tested. For reproductive evaluations, 14 studies evaluated reproductive endpoints and/or reproductive organs for 11 chemicals, and 15 studies evaluated developmental toxicity for 13 chemicals indicating no reproductive or developmental effects for the FND group as a whole. Some typical applications of FND Amides are:

masonry cement additive; curing agent for epoxy resins; closed hydrocarbon systems in oil field production, refineries and chemical plants; and slip and antiblocking additives for polymers.

The safety of the FND Amides to humans is recognised by the U.S. FDA, which has approved stearamide, oleamide and/or erucamide for adhesives; coatings for articles in food contact; coatings for polyolefin films; defoaming agents for manufacture of paper and paperboard; animal glue (defoamer in food packaging); in EVA copolymers for food packaging; lubricants for manufacture of metallic food packaging; irradiation of prepared foods; release agents in manufacture of food packaging materials, food contact surface of paper and paperboard; cellophane in food packaging; closure sealing gaskets; and release agents in polymeric resins and petroleum wax. The low order of toxicity indicates that the use of FND Amides does not pose a significant hazard to human health.

Pebeo Gilding Paints

Issue Date: 10/03/2023
Print Date: 17/08/2024

The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity profile. This conclusion is supported by a number of studies in the FND family of chemicals (amines, cationics, and amides as separate categories) that show no differences in the length or degree of saturation of the alkyl substituents and is also supported by the limited toxicity of these long-chain substituted chemicals.

HYDROCARBONS, C9-11, N-ALKANES, ISOALKANES, CYCLICS, <2% AROMATICS & NAPHTHA PETROLEUM,

HEAVY, HYDROTREATED

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cycloparaffins.

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver.

HYDROCARBONS, C9-11, N-ALKANES, ISOALKANES, CYCLICS, <2% AROMATICS & FATTY ACID DIMERS, C18-UNSATURATED, 1,3-PROPANEDIAMIDES

No significant acute toxicological data identified in literature search.

COPPER & FATTY ACID DIMERS, C18-UNSATURATED, 1,3-PROPANEDIAMIDES The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	~
Mutagenicity	~	Aspiration Hazard	✓

Legend:

🗶 – Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

Pebeo Gilding Paints	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
hydrocarbons, C9-11, n-	Endpoint	Test Duration (hr)	Species	Value	Source
alkanes, isoalkanes,	EC50	72h	Algae or other aquatic plants	>100mg/l	2
cyclics, <2% aromatics	NOEC(ECx)	504h	Crustacea	0.011mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	0.011- 0.017mg/L	4
	EC50	48h	Crustacea	<0.001mg/L	4
copper	LC50	96h	Fish	0.003mg/L	2
	EC50	96h	Algae or other aquatic plants	0.03- 0.058mg/l	4
	NOEC(ECx)	48h	Fish	<0.001mg/L	4
aphtha petroleum, heavy, hydrotreated	Endpoint	Test Duration (hr)	Species	Value	Source

Pebeo Gilding Paints

Issue Date: **10/03/2023**Print Date: **17/08/2024**

Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicit 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				
unsaturated, 1,3- propanediamides	Not Available	Not Available	Not Available	Not Available	Not Available
fatty acid dimers, C18-	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	672h	Fish	0.003mg/L	4
zinc powder	EC50	96h	Algae or other aquatic plants	0.042mg/L	2
	LC50	96h	Fish	0.011- 0.014mg/L	4
	EC50	48h	Crustacea	0.06- 0.08mg/L	4
	EC50	72h	Algae or other aquatic plants	0.005mg/l	4
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	96h	Algae or other aquatic plants	64mg/l	2
	EC50(ECx)	48h	Crustacea	>0.002mg/l	2
	EC50	48h	Crustacea	>0.002mg/l	2

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics:
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however.

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

Chemwatch: **5423-28** Page **21** of **25**

Pebeo Gilding Paints

Issue Date: 10/03/2023
Print Date: 17/08/2024

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish

Ecotoxicity

Version No. 4.1

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L. was determined

The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L.

Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
	No Data available for all ingredients	No Data available for all ingredients	

Bioaccumulative potential

Ingredient	Bioaccumulation	
No Data available for all ingredients		

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- Reuse
- Recycling
- ► Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.

Page **22** of **25**

Version No: 4.1 Pebeo Gilding Paints

Issue Date: **10/03/2023**Print Date: **17/08/2024**

- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Chemwatch: 5423-28

Marine Pollutant

HAZCHEM

•3Y

Land transport (ADG)

14.1. UN number or ID number	1263		
14.2. UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
14.3. Transport hazard class(es)	Class Subsidiary Hazard	Not Applicable	
14.4. Packing group	III		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Special provisions 163 223 367 Limited quantity 5 L		

Air transport (ICAO-IATA / DGR)

14.1. UN number	1263	1263				
14.2. UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)					
	ICAO/IATA Class	3				
14.3. Transport hazard class(es)	ICAO / IATA Subsidiary Hazard	ICAO / IATA Subsidiary Hazard Not Applicable				
0.000(00)	ERG Code	3L				
14.4. Packing group	III	III				
14.5. Environmental hazard	Environmentally hazardous					
	Special provisions		A3 A72 A192			
	Cargo Only Packing Instructions		366			
	Cargo Only Maximum Qty / Pack		220 L			
14.6. Special precautions for user	Passenger and Cargo Packing Instructions		355			
ioi usci	Passenger and Cargo Maximum Qty / Pack		60 L			
	Passenger and Cargo Limited Qu	uantity Packing Instructions	Y344			
	Passenger and Cargo Limited Ma	aximum Qty / Pack	10 L			

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1263			
	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)			

Pebeo Gilding Paints

Issue Date: 10/03/2023 Print Date: 17/08/2024

14.2. UN proper shipping name			
14.3. Transport hazard	IMDG Class	3	
class(es)	IMDG Subsidiary Haz	ard Not Applicable	
14.4. Packing group	III		
14.5 Environmental hazard	Marine Pollutant		
	EMS Number	F-E , S-E	
14.6. Special precautions for user	Special provisions	163 223 367 955	
101 4001	Limited Quantities	5 L	

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
hydrocarbons, C9-11, n- alkanes, isoalkanes, cyclics, <2% aromatics	Not Available
copper	Not Available
naphtha petroleum, heavy, hydrotreated	Not Available
zinc powder	Not Available
fatty acid dimers, C18- unsaturated, 1,3- propanediamides	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
hydrocarbons, C9-11, n- alkanes, isoalkanes, cyclics, <2% aromatics	Not Available
copper	Not Available
naphtha petroleum, heavy, hydrotreated	Not Available
zinc powder	Not Available
fatty acid dimers, C18- unsaturated, 1,3- propanediamides	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

copper is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

Pebeo Gilding Paints

Issue Date: 10/03/2023 Print Date: 17/08/2024

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

zinc powder is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

fatty acid dimers, C18-unsaturated, 1,3-propanediamides is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	No (fatty acid dimers, C18-unsaturated, 1,3-propanediamides)		
Canada - NDSL	No (hydrocarbons, C9-11, n-alkanes, isoalkanes, cyclics, <2% aromatics; copper; naphtha petroleum, heavy, hydrotreated; zinc powder; fatty acid dimers, C18-unsaturated, 1,3-propanediamides)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	No (fatty acid dimers, C18-unsaturated, 1,3-propanediamides)		
Japan - ENCS	No (copper; zinc powder; fatty acid dimers, C18-unsaturated, 1,3-propanediamides)		
Korea - KECI	No (fatty acid dimers, C18-unsaturated, 1,3-propanediamides)		
New Zealand - NZIoC	Yes		
Philippines - PICCS	No (fatty acid dimers, C18-unsaturated, 1,3-propanediamides)		
USA - TSCA	No (fatty acid dimers, C18-unsaturated, 1,3-propanediamides)		
Taiwan - TCSI	Yes		
Mexico - INSQ	No (fatty acid dimers, C18-unsaturated, 1,3-propanediamides)		
Vietnam - NCI	Yes		
Russia - FBEPH	No (fatty acid dimers, C18-unsaturated, 1,3-propanediamides)		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

SECTION 16 Other information

Revision Date	10/03/2023
Initial Date	02/09/2020

SDS Version Summary

Version	Date of Update	Sections Updated
3.1	23/12/2022	Classification review due to GHS Revision change.
4.1	10/03/2023	Classification change due to full database hazard calculation/update.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists

Chemwatch: **5423-28** Page **25** of **25** Issue Date: **10/03/2023**

Version No: 4.1 Pebeo Gilding Paints Print Date: 17/08/2024

- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ▶ ES: Exposure Standard
- ▶ OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- ▶ TLV: Threshold Limit Value
- ▶ LOD: Limit Of Detection
- OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- ▶ DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- ▶ NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- ▶ NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ▶ TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- ▶ NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.